首页
科学研究
研究领域
论文成果
专利
著作成果
科研项目
教学研究
教学资源
授课信息
教学成果
获奖信息
招生信息
学生信息
我的相册
教师博客
其他栏目
语种
English
李康吉
教授 博士生导师 硕士生导师
性别:男
毕业院校:浙江大学
学历:博士研究生毕业
学位:博士
在职信息:在职
入职时间: 2002-06-01
办公地点:电气大楼219室
电子邮箱:likangji@ujs.edu.cn
访问量:
开通时间:
.
.
最后更新时间:
.
.
论文成果
当前位置
中文主页
>>
科学研究
>>
论文成果
[1] 李康吉.Non-Invasive Thermal Comfort Recognition by Monitoring Human Thermal Adaptive Actions and Facial Tem
[2] 李康吉.Building's electricity load prediction using representative data selection and stacking ensemble str
[3] 李康吉.考虑数据分类的建筑电能耗集成预测方法
[4] 李康吉.Photovoltaic Solar Power Prediction Using iPSO-Based Data Clustering and AdaLSTM Network
[5] 李康吉.Data efficient indoor thermal comfort prediction using instance based transfer learning method
[6] 李康吉.An instance based multi-source transfer learning strategy for building's short-term electricity load
[7] 李康吉.A Data-Efficient Building Electricity Load Forecasting Method Based on Maximum Mean Discrepancy and
[8] 李康吉.An Optimal Control Method for Greenhouse Climate Management Considering Crop Growth’s Spatial Distr
[9] 李康吉.Correlation analysis and modeling of human thermal sensation with multiple physiological markers: An
[10] 李康吉.Non-invasive human thermal comfort assessment based on multiple angle/distance facial key-region tem
[11] 李康吉.A non-invasive facial multi-region temperature recognition and comfort prediction
[12] 李康吉.Non- invasive thermal sensation recognition based on human behavior postures in office environment
[13] 李康吉.Fast reconstruction of indoor temperature field for large-space building based on limited sensors: A
[14] 李康吉.Non-invasive thermal sensation recognition based on human behavior postures in office environment
[15] 李康吉.考虑时空变异特性的温室多环境因子优化策略
[16] 李康吉.Building?s hourly electrical load prediction based on data clustering and ensemble learning strategy
[17] 李康吉.Short-term electricity consumption prediction for buildings using data-driven swarm intelligence bas
[18] 李康吉.An adaptive ensemble predictive strategy for multiple scale electrical energy usages forecasting
[19] 李康吉.A state of the art review on the prediction of building energy consumption using data-driven techniq
[20] 李康吉.Hybrid teaching-learning artificial neural network for city-level electrical load prediction
共22条 1/2
首页
上页
下页
尾页
页