
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 13, No. 3, pp. 701-723

DOI: 10.4208/aamm.OA-2019-0328
June 2021

Anisotropic Yield Criterion for Metals Exhibiting
Tension–Compression Asymmetry

Lei Chen1, Jian Zhang1,2,∗ and Hongjian Zhang3

1 Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang,
Jiangsu 212013, China
2 National Center for International Research on Structural Health Management of
Critical Components, Jiangsu University, Zhenjiang, Jiangsu 212013, China
3 College of Energy and Power Engineering, Nanjing University of Aeronautics and
Astronautics, Nanjing, Jiangsu 210016, China

Received 12 November 2019; Accepted (in revised version) 2 July 2020

Abstract. The present study is devoted to developing a yield criterion that can model
both the yielding asymmetry and plastic anisotropy of pressure-insensitive metals.
First, a new isotropic yield criterion which can model the yielding asymmetry of
pressure-insensitive metals is proposed. The main advantage of the proposed criterion
is that it leads to a good approximation of yield loci calculated by the Taylor-Bishop-
Hill crystal plasticity model. Further, the isotropic criterion is extended to orthotropy
to take plastic anisotropy into account. The new anisotropic criterion is general and
can be used in three-dimensional stresses. The coefficients of the criterion are deter-
mined by an error minimization procedure. Applications of the proposed theory to
a hexagonal close packed (HCP) magnesium, a Cu-Al-Be shape memory alloy and a
Ni3Al based intermetallic alloy show that the proposed theory can describe well the
plastic anisotropy and yielding asymmetry of metals and the transformation onset of
the shape memory alloy, showing excellent predictive ability and flexibility.
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1 Introduction

In modern industry, virtual manufacturing technology is one of the most efficient meth-
ods to reduce production cycles and improve the quality of products. As a part of virtual
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manufacturing, numerical simulation of metal forming processes has always been a re-
search hotspot [1, 2]. The traditional manufacturing process analysis and mold design
rely mainly on the designer’s experience. In order to avoid defects such as wrinkles and
cracks, it is necessary to continuously test and repair molds, which results in long mold
production cycles and low efficiency. With the rapid development of computer technol-
ogy, metal sheet forming is gradually assisted by numerical simulations, which can not
only reduce the cost of mold testing, but also shorten the production cycles [3]. This is a
great progress in the field of metal plastic forming. It is generally known that the plastic
analysis of metal forming processes depends on the yield criterion and associated plas-
tic flow rules employed. In order to improve the accuracy of numerical plastic forming
simulations, it is essential to develop appropriate yield criteria involved. Given their im-
portance to plastic forming analysis, tremendous yield criteria for different metals have
been proposed by researchers at home and abroad.

For isotropic metals, the von Mises and Tresca criteria are the ones most used to pre-
dict the plastic behavior of materials. And the von Mises criterion has been widely imple-
mented in commercial FEM software packages such as ANSYS and ABAQUS. However,
there are numerous other isotropic criteria in literature [4–6]. Actually, research on yield
criteria for isotropic metals has been done quite thoroughly and the plastic forming sim-
ulations are accurate enough in most cases. However, due to their complicated plastic be-
havior, yield criteria for anisotropic metals are far from being thoroughly studied. In gen-
eral, the pre-machined or pre-rolled metal sheet exhibits significant anisotropy, which has
significant effects on the plastic forming process. In order to model the plastic behavior
of anisotropic materials, Hill proposed the first orthotropic yield criterion, which reduces
to von Mises criterion for isotropic conditions [7]. So far, because of its simplicity, this
famous criterion has been widely used in analytical or numerical simulations of forming
processes. Later, tremendous anisotropic yield cri-teria have been proposed. For reviews
concerning yield criteria of metals one may refer to [8,9]. Subsequently, outstanding con-
tributions have been made by Hill [10–13], Hosford [14–17] and Barlat [18–21]. For latest
research concerning yielding behavior of solids, one may refer to [22–27]. For metal-
lic materials, slip of dislocations and twinning are the main plastic deformation mecha-
nisms. For both conditions, shear strains occurred on certain crystallographic planes and
along certain directions. If the shear mechanism is reversible, yielding is insensitive to
the sign of the stress but is only related to the magnitude of the re-solved shear stress.
Thus, we get equal tensile yield stress and compressive yield stress. Most yield criteria in
literature, expressed by even functions of the stress components, are based on the hypoth-
esis of tension-compression asymmetry. This is true for metals deforming by reversible
shear mechanism. However, not all metallic materials are tension-compression symmet-
ric. Due to the directionality of twinning, a remarkable strength differential (SD) effect
is observed in HCP materials at low strain levels. In general, the yield stress in tension
is much higher than that in compression [17]. For Ll2-long-range ordered intermetallic
alloy, SD effect is observed for its violation of Schmid’s law [28]. To model the strength
differential effect of pressure insensitive metals, yield functions that can describe SD ef-
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fects of metals have been proposed in recent years [29–33]. Those criteria have gained a
lot of attention and some have been used to describe the SD effects of engineering mate-
rials [34–37].

Compared to the tremendous anisotropic yield functions proposed for materials with
equal tension and compression, criteria that can model both plastic anisotropy and yield-
ing asymmetry are still lacking. In the next section, a new isotropic yield criterion, which
can model the SD effects of pressure insensitive metals, will be suggested.

2 Proposed isotropic yield criterion

Recently, an isotropic yield function in terms of J2 and J3 has been proposed by Cazacu [38]

f ≡ J4
2−αJ2 J2

3 =τ8
Y. (2.1)

Here, J2= trS2/3 represents the second invariant of the stress deviator S, and J3= trS3/3
represents the third invariant of the stress deviator S (tr represents the trace operator
tr(A)=∑3

k=1 Akk); τY is the shear strength, which can be approximated as τY=σT
0 /
√

3 [39],
and α is a material constant. Of particular interest here, a product term of J2 and J3
was introduced. The yield locus predicted by Cazacu’s criterion shows very good agree-
ment with the Taylor-Bishop-Hill polycrystalline simulations for randomly oriented face-
centered-cubic (FCC) polycrystals [38].

As Cazacu’s criterion (Eq. (2.1)) is an even function of the components of the stress
tensor, it cannot capture asymmetry in yielding. The success of Cazacu’s criterion for
predicting the plastic response of FCC polycrystals gives confidence in extending it to
tension-compression asymmetry conditions. In order to capture asymmetry in yielding
of materials, the following isotropic function is proposed:

φ≡ J5/2
2 −αJ2 J3=τ5

Y. (2.2)

The physical significance of α can be interpreted by uniaxial loading tests. Consider a
uniaxial tension test, yielding occurs when σ1=σt, σ2=σ3=0. Substituting these stresses
into Eq. (2.2), we get

σt =τY

(
81
√

3
9−2
√

3α

)1/5

. (2.3)

Suppose σc is yield stress in uniaxial compression such that

σc =τY

(
81
√

3
9+2
√

3α

)1/5

. (2.4)
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Hence,

α=
3
√

3
2

(
σ5

t −σ5
c

σ5
t +σ5

c

)1/5

(2.5)

for

σt >σc >0⇒α∈
(

0,
3
√

3
2

)
,

for

0<σt <σc⇒α∈
(
−3
√

3
2

,0

)
. (2.6)

For materials with equal tensile and compressive yield stresses, i.e., α=0, the suggested
yield function (2.2) is identical with von Mises criterion. For the yield function to be
convex, α is limited to a given numerical range: α∈ (−2.25,2.25).

For a state of plane stress, Eq. (2.2) is simplified as[
1
3
(
σ1

2−σ1σ2+σ2
2)]5/2

− α

81
(
σ1

2−σ1σ2+σ2
2)

×
[
2σ1

3+2σ2
3−3(σ1+σ2)σ1σ2

]
=τ5

Y. (2.7)

For any α 6= 0, the yield locus of Eq. (2.7) is a ”triangle” with rounded corners. As a
demonstration, Fig. 1 shows the plane stress yield loci of Eq. (2.7) obtained corresponding
to σt/σc = 4/5,1,6/5, respectively. These ratios correspond to α=−1.316,0 (von Mises),
1.108, respectively.

Based on combined tension and torsion tests, Taylor and Quinney [40] pointed that
the third invariant of the stress deviators has effect on the yielding behavior of metals.
Considering the stress state of combined tension and torsion, suppose σ11 = σ, σ12 = τ
and all other components of stress tensor are zero, and the yield locus of the proposed
criterion in (σ,τ) plane is given by[

1
3
(
σ2+3τ2)]5/2

− α

81
(
σ2+3τ2)(2σ3+9τ2σ

)
=τY

5. (2.8)

Fig. 2 displays the yield loci in the tension-torsion plane (σ11/σ̄,σ12/σ̄) of the Tresca cri-
terion and the proposed criterion (Eq. (2.8)) according to σt/σc =4/5, 1 (von Mises) and
6/5, respectively. It can be seen that for σt/σc 6=1 the yield locus of the proposed criterion
departures sharply from that of the von Mises ellipse.

Tricomponent plane stress yield surface for isotropic FCC metals calculated by Taylor-
Bishop-Hill crystal plasticity model [41] shows that a coupling should exist between
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Figure 1: Yield loci predicted by the proposed isotropic yield function, according to σt/σc = 4/5, 5/5 (von
Mises), 6/5.

Figure 2: Yield loci predicted by Tresca criterion and the proposed isotropic yield function in the (σ,τ) plane
for σt/σc =4/5, 5/5 (von Mises), 6/5.

shear and normal components of stress. Fig. 3 shows the section of the yield surface
of the proposed isotropic yield function with planes parallel to the σxx/σ̄,σyy/σ̄ plane for
different values of S=σxy/σ̄. For materials with tension/compression symmetry (α=0),
Eq. (2.2) reduces to von Mises criterion and there is no coupling between shear and nor-
mal stress components. Therefore, the yield loci (dotted lines) in Fig. 3(a) exhibit the same
shape for different shear stresses. For materials with tension/compression asymmetry
(α 6= 0), the yield loci predicted by Eq. (2.2) do not exhibit the same shape for different
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(a) (b)

Figure 3: Tricomponent plane stress yield loci of the proposed isotropic yield function. The dotted line represents
the section of the yield surface by a plane parallel to (σxx/σ̄,σyy/σ̄) for different value S= σxy/σ̄ (constant
normalized shear stresses S every 0.1). (a) σt/σc =1 (von Mises), (b) σt/σc =3/4.

shear stresses, demonstrating couplings between shear and normal components of stress
(see Fig. 3(b)).

In order to check the predictive capability of the proposed yield function, the yield
loci of Eq. (2.2) are constructed and compared with the polycrystal calculations of FCC
polycrystals by Hosford and Allen [16] based on a generalization of the Taylor-Bishop-
Hill model [41]. The FCC metals, with randomly oriented polycrystals, are deformed by
{111} {112̄} twinning. The only parameter in the proposed criterion is α, which is de-
termined by the ratio of σt/σc (see Eq. (2.5)). A value of σt/σc calculated for randomly
oriented FCC polycrystals by Hosford and Allen is 0.78, to which the constant α=−1.427.
Fig. 4 shows the predicted yield locus of Eq. (2.2) for α=−1.427 (solid curve) and poly-
crystalline model calculated results (full circles) by Hosford and Allen [16]. Note that the
proposed criterion could reproduce the yield locus of FCC polycrystals obtained by poly-
crystalline calculations. Fig. 4 also shows the results of the comparison for body-centered-
cubic (BCC) polycrystals, which deform solely by {112} {1̄1̄1̄} twinning. Dashed curve
and open circles represent the yield locus of Eq. (2.2) and the polycrystal model, respec-
tively. The ratio of σt/σc predicted by polycrystalline model is 1.28 for BCC structured
metals, to which the value of α in the proposed criterion is 1.427. The comparison shows
that the proposed isotropic criterion can accurately model the yield stresses obtained by
polycrystalline model.

In general, the proposed isotropic criterion, which contains a product term of J2 and
J3, could describe very well the asymmetry in yielding of both FCC and BCC struc-
tured metals deformed by twinning. To model both the yielding asymmetry and plastic
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Figure 4: Comparison between plane stress yield loci of the proposed isotropic yield function and polycrystalline
model (Hosford and Allen [16]): (a) FCC (σt/σc=0.78 for which α=−1.427) (b) BCC ((σt/σc=1.28 for which
α=1.427).

anisotropy of metallic materials, we will extend the proposed theory to orthotropy in the
next section.

3 Extension of the isotropic yield function and parameter
identification

3.1 Extension of the isotropic yield function to orthotropy

In the following we will extend the proposed isotropic criterion (Eq. (2.2)) to orthotropy,
so that it can describe both plastic anisotropy and yield asymmetry of pressure insensitive
metals. There are several ways available to extend an isotropic criterion to anisotropy,
such as the method of linearly transformed stress tensors [42, 43] and the ”isotropy plas-
ticity equivalent” (IPE) method introduced by Karafillis and Boyce [44]. Here we use
the approach that consists of using the representation theorems to construct generaliza-
tions of anisotropy conditions of classic invariants of J2 and J3. This approach was first
introduced by Cazacu and Barlat [45], which could include any type of anisotropy. The
orthotropic generalizations of the second and third invariant of the stress deviator, de-
noted by J0

2 and J0
3 are:

J0
2 =

a1

6
(σyy−σzz)

2+
a2

6
(σzz−σxx)

2+
a3

6
(σxx−σyy)

2

+a4σ2
yz+a5σ2

zx+a6σ2
xy, (3.1a)



708 L. Chen, J. Zhang and H. J. Zhang / Adv. Appl. Math. Mech., 13 (2021), pp. 701-723

J0
3 =

1
27

(b1+b2)σ
3
xx+

1
27

(b3+b4)σ
3
yy+

1
27

[2(b1+b4)−b2−b3]σ
3
zz

− 1
9
(b1σyy+b2σzz)σ

2
xx−

1
9
(b3σzz+b4σxx)σ

2
yy

− 1
9
[
(b1−b2+b4)σxx+(b1−b3+b4)σyy

]
σ2

zz

+
2
9
(b1+b4)σxxσyyσzz−

σ2
yz

3
[
(b6+b7)σxx−b6σyy−b7σzz

]
− σ2

zx
3
[
2b9σyy−b8σzz−(2b9−b8)σxx

]
−

σ2
xy

3
[
2b10σzz−b5σyy−(2b10−b5)σxx

]
+2b11σyzσzxσxy, (3.1b)

where x, y, and z coincide with the three principal axes of anisotropy, such as the rolling
direction, the long transverse direction, and the short transverse direction, respectively.
And ak (k=1,··· ,6) and bk (k=1,··· ,11) are constants characteristic of the current state of
anisotropy. It’s easy to prove that, for any p and σ,

J0
2 (σ+pI)= J0

2 (σ), J0
3 (σ+pI)= J0

3 (σ), (3.2)

which implies that J0
2 and J0

3 are insensitive to hydrostatic pressure. Also, J0
2 and J0

3 are
invariants to any transformation belonging to the symmetry group of the material. If all
the coefficients ak (k=1,··· ,6) are set to unity, J0

2 reduces to J2. While all the coefficients bk
(k=1,··· ,11) reduce to unity for isotropic conditions, J0

3 reduces to J3. Using the approach
discussed above, the following orthotropic yield criterion is derived based on Eq. (2.2)

Φ≡
(

J0
2
)5/2−αJ0

2 J0
3 =τ5

Y. (3.3)

Obviously, the proposed orthotropic criterion is insensitive to hydrostatic pressure, which
is consistent with the hypothesis that hydrostatic pressure does not cause plastic de-
formation of metals.

It should be noted that extension of isotropic yield function using linear transforma-
tion of the Cauchy stress tensor may have convexity problems [46]. For anisotropic yield
function containing a great deal of parameters with complex mathematical expression,
the convexity requirement would not be easy to check. In this case, the convexity of yield
criterion for a specific material can be investigated by graphical method. The convexity
of the proposed yield function has been checked for materials applied in this paper, as in
the Appendix.

For a thin sheet perpendicular to the z axis and in a condition of plane stress
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(σxx,σyy,σxy) the proposed criterion (Eq. (3.3)) is expressed as

Φ≡
[

1
6
(a1+a3)σ

2
xx−

a1

3
σxxσyy+

1
6
(a1+a2)σ

2
yy+a4τ2

xy

]5/2

−α

[
1
6
(a1+a3)σ

2
xx−

a1

3
σxxσyy+

1
6
(a1+a2)σ

2
yy+a4τ2

xy

]

×



1
27

(b1+b2)σ3
xx+

1
27

(b3+b4)σ
3
yy

−1
9
(b1σxx+b4σyy)σxxσyy

−1
3

σ2
xy
[
(b5−2b10)σxx−b5σyy

]


=τ5

Y. (3.4)

In particular, the section of the yield locus with σxy =0 is[
1
6
(a1+a3)σ

2
1−

a1

3
σ1σ2+

1
6
(a1+a2)σ

2
2

]5/2

−α

[
1
6
(a1+a3)σ

2
1−

a1

3
σ1σ2+

1
6
(a1+a2)σ

2
2

]

×


1

27
(b1+b2)σ3

1 +
1
27

(b3+b4)σ
3
2

−1
9
(b1σ1+b4σ2)σ1σ2

=τ5
Y. (3.5)

Suppose a uniaxial tension σθ directed at an angle θ with the x axis, then
σxx =σθcos2θ,
σyy =σθsin2θ,
σxy =σθ sinθcosθ.

(3.6)

If σT
θ and σC

θ are the yield stresses of the tensile and compression test specimens under
uniaxial loading. Substituting (3.6) into (3.4), it follows that

σT
θ =τY



 1
6
(a1+a3)cos4θ+(a4−a1/3)cos2θsin2θ

+
1
6
(a1+a2)sin4θ


5/2

−α

 1
6
(a1+a3)cos4θ+(a4−a1/3)cos2θsin2θ

+
1
6
(a1+a2)sin4θ




1
27

(b1+b2)cos6θ+
1
27

(b3+b4)sin6θ

−1
9

[
(b1+3b5−6b10)cos2θ

+(b4−3b5)sin2θ

]
sin2θcos2θ





−1/5

, (3.7a)
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σC
θ =τy



 1
6
(a1+a3)cos4θ+(a4−a1/3)cos2θsin2θ

+
1
6
(a1+a2)sin4θ


5/2

+α

 1
6
(a1+a3)cos4θ+(a4−a1/3)cos2θsin2θ

+
1
6
(a1+a2)sin4θ




1
27

(b1+b2)cos6θ+
1

27
(b3+b4)sin6θ

−1
9

[
(b1+3b5−6b10)cos2θ

+(b4−3b5)sin2θ

]
sin2θcos2θ





−1/5

. (3.7b)

In particular,

σT
0 =τY

[(
a1+a3

6

)5/2

−α

(
a1+a3

6

)(
b1+b2

27

)]−1/5

, (3.8a)

σT
45=τY

 (
a2+a3−6a4

24

)5/2

− α

5184
(a2+a3−6a4)

(b2+b3−2b1−2b4−18b10)

−1/5

, (3.8b)

σT
90=τY

[(
a1+a2

6

)5/2

−α

(
a1+a2

6

)(
b3+b4

27

)]−1/5

, (3.8c)

σC
0 =τY

[(
a1+a3

6

)5/2

+α

(
a1+a3

6

)(
b1+b2

27

)]−1/5

, (3.8d)

σC
45=τY

 (
a2+a3−6a4

24

)5/2

+
α

5184
(a2+a3−6a4)

(b2+b3−2b1−2b4−18b10)

−1/5

, (3.8e)

σC
90=τY

[(
a1+a2

6

)5/2

+α

(
a1+a2

6

)(
b3+b4

27

)]−1/5

. (3.8f)

In condition of equibiaxial tension, yielding occurs when σ11=σ22=σT
b , thus

σT
b =τY

[(
a2+a3

6

)5/2

−α

(
a2+a3

6

)(
b2+b3−2b1−2b4

27

)]−1/5

. (3.9)

While in condition of equibiaxial compression, yielding occurs when σ11=σ22=σC
b ,

σC
b =τY

[(
a2+a3

6

)5/2

+α

(
a2+a3

6

)(
b2+b3−2b1−2b4

27

)]−1/5

. (3.10)
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Furthermore, let rθ be the ratio of transverse to through thickness increment of the loga-
rithmic strain in condition of uniaxial loading directed at angle θ with x axis, then

rθ =−
sin2θ ∂Φ

∂σxx
−sin2θ ∂Φ

∂σxy
+cos2θ ∂Φ

∂σyy

∂Φ
∂σxx

+ ∂Φ
∂σyy

. (3.11)

In particular,

rT
0 =

[
a1

(
a1+a3

6

)3/2

− 2αa1(b1+b2)

135
− αb1(a1+a3)

45

]

×
[

a3

(
a1+a3

6

)3/2

− 2αa3(b1+b2)

135
− αb2(a1+a3)

45

]−1

, (3.12a)

rT
90=

[
a1

(
a1+a2

6

)3/2

− 2αa1(b3+b4)

135
− αb4(a1+a2)

45

]

×
[

a1

(
a1+a2

6

)3/2

− 2αa2(b3+b4)

135
− αb3(a1+a2)

45

]−1

, (3.12b)

rC
0 =

[
a1

(
a1+a3

6

)3/2

+
2αa1(b1+b2)

135
+

αb1(a1+a3)

45

]

×
[

a3

(
a1+a3

6

)3/2

+
2αa3(b1+b2)

135
+

αb2(a1+a3)

45

]−1

, (3.12c)

rC
90=

[
a1

(
a1+a2

6

)3/2

+
2αa1(b3+b4)

135
+

αb4(a1+a2)

45

]

×
[

a1

(
a1+a2

6

)3/2

+
2αa2(b3+b4)

135
+

αb3(a1+a2)

45

]−1

. (3.12d)

In the above expressions, the superscripts ”T” and ”C” represent tension and compres-
sion conditions, respectively.

3.2 Numerical calculation of the anisotropy parameters

For a state of plane stress, the proposed yield function (Eq. (3.4)) contains 11 adjustable
parameters (a1,··· ,a4), (b1,··· ,b5,b10) and α. Particularly, when σxy =0, the proposed cri-
terion (Eq. (3.5)) has 8 adjustable parameters. In order to calibrate the anisotropy param-
eters in condition of plane stress, the following experimental data could be adopted: σT

0 ,
σC

0 , σT
45, σC

45, σT
90, σC

90, σT
b , σC

b , rT
0 , rC

0 , rT
45, rC

45, rT
90, rC

90. The choice of the reference yield stress
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is arbitrary. As a result, we may get the following set of 14 equations:

σT
0 (a1,··· ,a4,b1,··· ,b5,b10,α)−σre f =0

σC
0 (a1,··· ,a4,b1,··· ,b5,b10,α)−σre f =0

σT
45(a1,··· ,a4,b1,··· ,b5,b10,α)−σre f =0

σC
45(σ

C
45,a1,··· ,a4,b1,··· ,b5,b10,α)−σre f =0

σT
90(σ

T
90,a1,··· ,a4,b1,··· ,b5,b10,α)−σre f =0

σC
90(σ

C
90,a1,··· ,a4,b1,··· ,b5,b10,α)−σre f =0

σT
b (σ

T
b ,a1,··· ,a4,b1,··· ,b5,b10,α)−σre f =0

σC
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. (3.13)

σT
0 (·), rT

0 (·), etc. are theoretical values calculated according to the formulae given in Sec-
tion 3.1, while σre f and rre f denote the corresponding experimentally determined yield
stresses and r-values. The nonlinear equation system has 11 unknown anisotropy pa-
rameters a1,··· ,a4,b1,··· ,b5,b10 and α. For the eight parameters version, less experiment
data is necessary. In fact, greater or equal to eight equations are necessary to determine
the adjustable parameters.

A traditional and convenient method to calculate the anisotropy parameters is to min-
imize the following error function by the least square method

ε(a1,··· ,a4,b1,··· ,b5,b10,α)

=
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)exp
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. (3.14)

Here, ”n” and ”m” represent the number of experimental yield stresses and r-values,
respectively for different orientations θ. The superscript indicates whether the respective
value is experimental data or calculated results using the expressions as in Section 3.1
while λi, ηi, µ and γ are weight factors.

The next work is to optimize the anisotropy parameters a1,··· ,a4,b1,··· ,b5,b10 and α,
respectively, so as to get a minimum of the error function. There are different mathemat-
ical methods to solve such a problem. One can find a survey of such methods in [47].
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The method of steepest descent is one of the most convenient methods, which will be
adopted in this paper.

It is believed that the error minimization procedure discussed above is a great en-
gineering method to examine a yield criterion’s fexibility: a yield function is flexible
enough for general purpose only if it can ”pass” the error minimization procedure
test [48]. In the following the new yield function will be applied to different materials
to illustrate its predictive capability.

4 Applications

In order to check the proposed yield criterion’s predictive ability and flexibility, in the
following we will apply it to three different metallic materials: an HCP crystal struc-
ture magnesium, a shape memory alloy Cu-Al-Be and a Ni3Al based intermetallic alloy.
An important reason for choosing those materials is that their yield loci exhibit widely
different shapes, which is preferred to check a yield function’s flexibility.

4.1 Testing material AZ31 magnesium alloy

Andar et al. [49, 50] tested a commercial AZ31 magnesium alloy sheet under uniaxial
tension-compression loading and proportional biaxial tensile loading using cruciform
specimens. Bulge tests were also carried out to obtain a larger plastic strain than biaxial
tension. Plastic work contours were determined over a range of equivalent plastic strain
levels (0.4% ∼ 4%), to quantitatively determine the elastic-plastic deformation behavior.
For details of experimental data, see Andar et al. [49]. The material data for the AZ31
Mg sheet material is given in Table 1. In order to calibrate the proposed yield function
Eq. (3.5), the following data has been selected as input data: σT

0 , σC
0 , σT

90, σC
90, σT

b , rT
0 , rC

0 ,
rT

90, rC
90. Fig. 5 shows the yield loci of experiments of AZ31 Mg for different plastic strains,

namely 0.4%, 0.8%, 2%, 4%, of the largest principal strain (experimental points are repre-
sented by symbols). The yield locus of the AZ31 Mg has a significant asymmetrical shape.
Note that the yield stress in tension is much larger than that in compression (σT/σC>1.45
for all cases). The asymmetry of yielding of magnesium is thought to be caused by the
directionality of twinning [17]. AZ31 Mg also shows strong differential work hardening
when subject to proportional biaxial stresses. This indicates that the measured work con-
tours are different in both shape and scale. Fig. 5 also shows the theoretical yield loci of
the proposed criterion given by Eq. (3.5). The parameters of the criterion were obtained
by minimizing the error function (3.14) using the method of steepest descent. The cal-
culated values of the parameters are given in Table 2. For the sake of comparison, yield
loci predicted by Cazacu-Barlat (2004) [29] are also presented in Fig. 5. The coefficients
for Cazacu-Barlat (2004), also calculated by the error minimization procedure, are given
in Table 3.

It is observed that the predicted yield loci of the present theory and Cazacu-Barlat
(2004) criterion are very close, and the main difference appears generally near equi-
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(a) (b)

(c) (d)

Figure 5: Experimentally determined yield loci of AZ31 Mg and yield loci predicted by the models of Cazacu-
Barlat (2004) and the proposed criterion (data after Andar [49]).

biaxial tension or equi-biaxial compression area. Experimental results show that both
theories can describe the asym-metric yield behavior of AZ31 Mg well at small plastic
strain levels, although deviation between theory and experiment data exists for some
points (see Figs. 5(a) and (b)). For larger strain levels, the biggest difference between
Cazacu-Barlat (2004) criterion and the present theory appears near the equi-biaxial com-
pression point (see Figs. 5(c) and (d)). For plastic strain of 2% and 4%, all five experiment
points are used as input data to calibrate the yield functions, thus it’s impossible to com-
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Table 1: Experimental material data of AZ31 Mg.

ε
p
0 σT

0 (MPa) σC
0 (MPa) σT

90(MPa) σC
90(MPa) σT

b (MPa) rT
0 (MPa) rC

0 (MPa) rT
90(MPa) rC

90(MPa) τY
∗

0.004 215 -147 223 -146 221 0.382 0.141 0.715 0.158 124
0.008 228 -148 234 -148 245 0.59 0.141 0.951 0.158 132
0.02 250 -158 254 -162 279 2.56 0.141 3.35 0.158 144
0.04 274 -170 273 -173 315 2.56 0.141 3.35 0.158 158

* Approximated using τY =σT
0 /
√

3.

Table 2: Anisotropic and tension-compression asymmetry coefficients of the proposed criterion for alloy AZ31
Mg.

ε
p
0 a1 a2 a3 b1 b2 b3 b4 α

0.004 0.6559 3.131 2.8133 -0.1617 2.501 3.1041 -0.363 3.7115
0.008 0.6558 2.8938 2.8933 -0.2303 2.8637 2.8765 -0.2219 3.6205
0.02 0.6975 2.8239 2.8898 -0.2916 2.8255 2.8167 -0.1738 3.6585
0.04 0.6523 2.9515 2.9758 -0.1987 2.9751 2.9791 -0.2972 3.6858

Table 3: Anisotropic and tension-compression asymmetry coefficients of Cazacu-Barlat (2004) criterion for alloy
AZ31 Mg.

ε
p
0 a1 a2 a3 b1 b2 b3 b4 α

0.004 0.8231 2.4163 2.2614 -0.2443 2.3115 2.8206 -0.1892 2.3012
0.008 0.8659 2.6281 2.4868 -0.3412 2.5352 2.722 -0.1289 3.7736
0.02 0.5091 3.1601 3.3246 -0.4373 2.761 2.6397 -0.4261 3.7847
0.04 0.5328 3.2806 3.3675 -0.4451 2.7727 2.7445 -0.4471 3.8699

pare the prediction accuracy of the two models. One may also find that the theoretical
yield loci do not match the experimental input data perfectly. If we use a Newton solver
for calibration, the yield function will match the experimental input data perfectly. How-
ever, such an investigation is out of the scope of this paper since we are focusing on the
flexibility aspects here.

4.2 Testing material Cu-Al-Be shape memory alloy

Shape memory alloy (SMA) often exhibits an asymmetric behavior between tension and
compression. Bouvet et al. [51] conducted extensive experimental studies on the behav-
ior of the Cu-Al-Be SMA under multiaxial proportional and nonproportional loadings.
The initial yield surface of phase transformation initiation (austenite to martensite) was
obtained. Fig. 6 shows the experimental initial transformation onset surface of Cu-Al-Be
SMA (experiment data is plotted by symbols). Note that the transformation onset surface
of Cu-Al-Be SMA has a significant asymmetrical shape, the compressive ”yield” stress is
20% larger than tensile ”yield” stress. Strictly speaking, the transformation onset surface
of SMAs is different from the yield surface of metals. However, as both are boundaries of
domain in stress space, it’s reasonable to describe them with similar models. Herein we
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Figure 6: Experimentally determined yield loci of Cu-Al-Be SMA and yield loci predicted by the models of Hill’s
quadratic criterion, Cazacu-Barlat (2004) and the proposed criterion (data after Bouvet [50]).

will apply the proposed criterion to model the initial onset of transformation of Cu-Al-Be
SMA.

Fig. 6 also shows the theoretical yield locus of the proposed criterion given by
Eq. (3.5). The parameters for the proposed criterion, calculated using error minimiza-
tion procedure, are listed in Table 4. For the sake of comparison, the yield loci of Hill’s
quadratic criterion [7] and Cazacu-Barlat (2004) criterion [29] are also potted in Fig. 6.
The calculated coefficients of Cazacu-Barlat (2004) are given in Table 4, and the calcu-
lated anisotropic constants of Hill’s quadratic criterion, denoted as F, G, H, are given in
Table 5.

The predicted yield loci of Cazacu-Barlat (2004) and the proposed yield criterion for
Cu-Al-Be are very close, and the main difference appears in biaxial compression area.
Experiment results illustrate that the proposed yield function fits the experiment data

Table 4: Anisotropic and tension-compression asymmetry coefficients of yield criteria for Cu-Al-Be SMA.

Yield criterion a1 a2 a3 b1 b2 b3 b4 α
Proposed criterion 1.0497 1.307 1.0379 0.9256 0.8932 1.1147 1.299 -1.4713

Cazacu- Barlat (2004) 1.1047 1.1529 1.0471 0.6814 0.6028 0.8221 0.7803 -1.2109

Table 5: Calculated parameters of Hill’s quadratic yield function for Cu-Al-Be SMA.

F G H
0.8827×10−4 0.6414×10−4 0.6798×10−4
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better than Cazacu-Barlat (2004). The proposed criterion can model the asymmetric
transformation onset surface of Cu-Al-Be SMA very well except for the experiment point
(91.43MPa, 42.86MPa), which seems like an experimental mistake. Cazacu-Barlat (2004)
criterion over-values the yield stresses near equi-biaxial compression region a little bit.
As Hill’s quadratic criterion is based on the hypothesis of tension-compression symme-
try, therefore it failed to reproduce the asymmetry shape of the transformation onset sur-
face for Cu-Al-Be. Undoubtedly, modeling the plastic behavior of metals with remark-
able tension-compression asymmetry by symmetric yield functions will cause significant
errors.

4.3 Testing material Ni3Al based intermetallic alloy IC10

Next, we consider the experimental series of a Ni3Al based super-alloy IC10, which was
developed as blade materials in advanced aero-engine [52]. Due to the preferred 〈001〉
crystallographic orientation and tension-compression asymmetry of the Ll2-long-range
ordered Ni3Al [28], the directionally solidified alloy exhibits both plastic anisotropy and
yielding asymmetry between tension and compression. The author of the present pa-
per [53] had studied the plastic behavior of IC10, and the yield locus according to 0.2%
plastic strain of the largest principal strain was obtained by biaxial tensile tests on cruci-
form specimens and bi-compression tests on cubes. In Fig. 7 are presented the theoretical
yield locus given by the proposed theory (Eq. (3.5)) together with the experimental data.
The parameters involve in the 2D yield locus are given in Table 6. For the sake of compar-
ison, yield loci predicted by Hill’s quadratic criterion and Cazacu-Barlat (2004) are also
presented in Fig. 7. The calculated coefficients for Cazacu-Barlat (2004) are given in Table
6, and the calculated anisotropic constants of Hill’s quadratic criterion, denoted as F, G,
H, are given in Table 7.

The yield loci of Cazacu-Barlat (2004) and the proposed yield criterion are very close
and both can describe the asymmetric yield behavior of alloy IC10 well, except for few
experiment points, which are overestimated by both theories. For Hill’s quadratic crite-
rion, signficant discrepancies are found in some stress states under biaxial compression.
As discussed above, modeling the plastic behavior of metals with tension-compression
asymmetry by symmetric yield functions will cause significant errors.

Table 6: Anisotropic and tension-compression asymmetry coefficients of yield criteria for alloy IC10.

Yield criterion a1 a2 a3 b1 b2 b3 b4 α
Proposed criterion 1.1392 1.2297 1.0684 0.939 0.6540 0.1318 -0.5981 0.9510

Cazacu-Barlat (2004) 1.1594 1.1673 1.1494 0.5941 0.5914 -0.4895 -0.4908 0.6727

Table 7: Calculated parameters of Hill’s quadratic yield function for alloy IC10.

F G H
1.087×10−6 0.5999×10−6 0.869×10−6
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Figure 7: Experimental yield loci of alloy IC10 and yield loci predicted by the models of Hill’s quadratic criterion,
Cazacu-Barlat (2004) and the proposed criterion.

5 Conclusions

A new isotropic yield criterion which contains a product term of J2 and J3 is proposed.
The isotropic criterion can model the yielding asymmetry of pressure insensitive met-
als. The main advantage of the proposed theory is that it leads to a good approximation
of yield loci calculated by the Taylor-Bishop-Hill crystal plasticity model. Moreover, the
proposed isotropic criterion is extended to orthotropy using the generalized invariants of
the stress deviator. The parameters involve in the criterion are identified based on the er-
ror minimization method. In order to demonstrate the wide application of the proposed
criterion, it is applied to different materials and compared with existing theories. Results
show that the proposed theory can describe well the yielding behavior of AZ31 mag-
nesium alloy and Ni3Al based super-alloy IC10. Furthermore, application to Cu-Al-Be
SMA shows that the proposed theory can model the transformation onset of the shape
memory alloy better than Cazacu-Barlat (2004) criterion, showing excellent predictive
ability and flexibility.

Appendix: Discussion on the convexity of the proposed yield
function

Convexity of yield surface should be satisfied in modeling the plastic behavior of met-
als. For yield function with simple expression, convexity of yield surface can be eas-
ily checked by assuming that its Hessian matrix is positive semi-definite. However, for
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Figure 8: The calculated yield loci of AZ31 Mg by the proposed yield function at different plastic strains.

Figure 9: The zoomed segment of the yield locus of the proposed yield function for AZ31 Mg at 4% plastic
strain.

anisotropic yield function containing more parameters with complex mathematical ex-
pression, the convexity requirement would not be easy to check. In this case, the con-
vexity of yield criterion for a specific material can be investigated by graphical method.
Khan et al. [54] have adopted this method to check the convexity of the extended Hill’s
quadratic yield criterion.

The convexity of the proposed yield function for the three different metallic materials
applied in this study will be checked by graphical method. Let’s start with alloy AZ31
Mg. From Fig. 8, it is observed that the curvature of the yield loci for AZ31 Mg reaches the
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smallest value near equibiaxial tension point for all strain levels. Fig. 9 shows the zoomed
segment on the yield locus at 4% plastic strain near the equibiaxial tension point. In order
to check the convexity of yield locus near this area, a reference straight line has been
plotted. It can be observed that segments of the yield locus with the smallest curvature
is convex. This indicates that the whole yield locus of AZ31 Mg at 4% plastic strain is
convex. By applying the same method to other strain levels, the yield loci obtained with
plastic strain lower than 4% can also satisfy the condition of convexity. Therefore, the
convexity of the proposed yield function for AZ31 Mg can be satisfied in engineering
applications.

By applying the same method to other materials, it shows that the convexity of the
proposed yield function for Cu-Al-Be SMA and Ni3Al based alloy IC10 can be satisfied
in engineering applications too.
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