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Polynomial chaos expansion (PCE) is widely used in a variety of engineering fields for
uncertainty and sensitivity analyses. The computational cost of full PCE is unaffordable
due to the ‘curse of dimensionality’ of the expansion coefficients. In this paper, a novel
methodology for developing sparse PCE is proposed by making use of the efficiency of
greedy coordinate descent (GCD) in sparsity exploitation and the capability of Bregman
iteration in accuracy enhancement. By minimizing an objective function composed of
the l1 norm (sparsity) of the polynomial chaos (PC) coefficients and regularized l2 norm
of the approximation fitness, the proposed algorithm screens the significant basis polyno-
mials and builds an optimal sparse PCE with model evaluations much fewer than unknown
coefficients. To validate the effectiveness of the developed algorithm, several benchmark
examples are investigated for global sensitivity analysis (GSA). A detailed comparison is
made with the well-established orthogonal matching pursuit (OMP), least angle regression
(LAR) and two adaptive algorithms. Results show that the proposed method is superior to
the benchmark methods in terms of accuracy while maintaining a better balance among
accuracy, complexity and computational efficiency.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Along with the ever-increasing complexity of computer models for engineering simulations, the inherent uncertainties of
input data and model parameters are evolving rapidly. In this context, characterizing the uncertainties within a computer
model is of great importance, and this has motivated the development of a variety of numerical techniques for the emerging
field of uncertainty quantification. To efficiently quantify the effect of variation in each input parameter on model outputs,
one popular technique is to substitute a computationally expensive model with a surrogate model that possesses similar
quantities of interest such as statistical moments and the distribution of model outputs.

Surrogate model (also known as metamodel) is a mathematical or numerical approximation of a complex model gener-
ated by mapping from a small amount of random inputs to the corresponding model outputs. Over the past few years, a
number of surrogate models have been developed in the field of uncertainty quantification, for example polynomial regres-
sion model [1], radial basis function [2], Kriging [3]/Gaussian process [4], artificial neural network [5], support vector regres-
sion [6,7], ensemble of surrogates [8] and PCE [9–15], among which PCE has received much attention for uncertainty and
sensitivity analyses [9–16].
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First introduced by Ghanem and Spanos [17] to stochastic mechanics based on homogeneous chaos theory [18] and later
generalized by Xiu and Karniadakis [19] for different types of statistical distributions (e.g. uniform, beta and gamma), the PCE
approach is to represent explicitly the stochastic model response as a series of orthonormal multivariate polynomials, i.e. PC
basis [17]. In this scenario, quantification of the response probability density function is equivalent to estimation of the PC
coefficients that are the coordinates of the stochastic response in the basis and can be evaluated at a set of sampling points in
the input space. To build a PCE, two main approaches are typically adopted: intrusive and non-intrusive. The intrusive
approach requires modifying the solving scheme of the deterministic governing equations of the model [20], whereas the
non-intrusive approaches such as the projection method [21] and the regression method [9,22] compute the PC coefficients
by performing repeated simulations on limited number of input–output samples. Nevertheless, for either intrusive or non-
intrusive approaches, the number of model evaluations (i.e. the computational cost) required for computing the PC coeffi-
cients increases dramatically with the number of input variables and the order of expanded polynomials.

To circumvent the issue of ‘curse of dimensionality’, several efficient non-intrusive approaches have been developed in
recent years, such as adaptive methods [10,23–25] for sequentially selecting the significant basis polynomials from the full
PCE, multi-fidelity methods [4,26] for achieving accurate predictions of quantities of interest using combination of ‘low-
fidelity’ and ‘high-fidelity’ PCE simulations, sparse grid based methods [27,28] for utilizing sparse grid interpolation tech-
niques to reduce the number of collocation points in constructing the PCE, l1-minimization methods [26,29–31] for scanning
important bases by minimizing the l1 norm of PCE coefficients while preserving the fitting accuracy, and Bayesian methods
[32,33] for generating the sparse PCE with statistical model selection criteria. These approaches have been demonstrated
with considerable computational gains compared to the classical PCE method.

In the field of signal processing and data analysis, coordinate descent (CD) algorithms have received much attention due
to its simplicity and efficiency in sparsity exploitation [34–37]. On the other hand, the least absolute shrinkage and selection
operator (LASSO) is widely adopted to perform continuous model selection and enforce sparse solutions for problems where
the number of predictors exceeds the number of cases [38]. It was found by Wu and Lange [35] that both cyclic CD, also
known as pathwise coordinate descent (PCD) [34], and GCD were superior to the LAR [39] in terms of efficiency, robustness
and model selection for LASSO-penalized l2 regression, while GCD was substantially faster than cyclic CD for LASSO-
penalized l1 regression. GCD was further developed by Li and Osher [40] with combination of Bregman iteration [41] to solve
the compressed sensing problems [42–44]. Recently, Zhou et al. [45] developed an adaptive method based on partial least
squares and distance correlation for building sparse PCE and compared their algorithm with LASSO-based sparse PCE, in
which PCD [36] was employed.

Motivated by the preceding analysis, the present paper aims at efficiently building sparse PCEs in the context of LASSO-
based regression by taking advantage of both GCD and Bregman iteration. To the best of the authors’ knowledge, there is still
no research on the capability of GCD algorithms for the purpose of sparse PCE construction. It has been shown that GCD may
converge to a sparse solution significantly faster than cyclic or randomized CD [35,46], especially for high-dimensional prob-
lems. In particular, GCD applied to problems of the LASSO form can sometimes approach to an optimal solution before exe-
cuting even a single pass of all coordinates [46]. This suggests that GCD has an inherent screening ability for sparse
optimization, which strongly motivates its combination with sparse PCE metamodeling for tackling high-dimensional prob-
lems. The novelty and contribution of the proposed method lie in the following aspects: (1) This study is probably the first
work to develop a GCD algorithm for sparse PCE metamodeling in the context of LASSO-based regression. By updating the
coordinate with the largest energy decrease [40], the GCD method is straightforward, efficient and robust in sparsity
exploitation. (2) The regularization parameter k in the LASSO-based regression is commonly selected by cross-validation
[35], which often leads to inefficient computation. In addition, the inefficiency is created by the dilemma that bigger k is pre-
ferred for more accuracy whereas smaller k gives rise to faster convergence in the coordinate updating of GCD [40]. To tackle
this issue, this study incorporates Bregman iteration into the GCD to form a Bregman-iterative GCD (BGCD) algorithm struc-
ture, which not only settles the above inefficiency by adopting a moderate k with a relatively wide range of appropriate val-
ues, but also considerably enhances the convergence and accuracy of the GCD in solving the PC coefficients. (3) Existing non-
intrusive algorithms for building sparse PCEs are mainly for problems with more cases than the number of predictors. How-
ever, the proposed algorithm is devised to handle problems with far fewer cases than the number of predictors, which is of
great potential to the uncertainty quantification in practical engineering.

In this paper, the sparse PCE is employed for the GSA that aims at quantifying the respective effects of different inputs and
their interactions on an assigned output response. GSA can provide complete information about the model behavior when
the inputs vary in the entire domain. The priority level and ranking of the inputs resulting from the GSA can be very helpful
for designers in narrowing the uncertain scope of model response. Among the developed works on sensitivity analysis, Sobol’
indices have attracted greater portion of attention due to the fact that they can provide accurate information for most models
[16,47–49]. The remainder of the paper is organized as follows. Section 2 gives a brief introduction of the Sobol’ decompo-
sition and corresponding sensitivity indices for the GSA. In Section 3, the polynomial chaos approximation of a multidimen-
sional model is recalled. The detailed procedure on how to determine the Sobol’ indices from the PC coefficients is given in
particular. Then, in Section 4, a BGCD algorithm is proposed for building the optimal sparse PCE from a given sample set. The
performance of the proposed algorithm is assessed on several benchmark examples for GSA in Section 5, and the results are
compared with the well-established OMP algorithm, LAR technique and two adaptive methods. Section 6 summarizes con-
cluding remarks.
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2. Sobol’ decomposition

In this section, the Sobol’ decomposition and corresponding sensitivity indices for the GSA are briefly recalled.
Let us consider a square integrable function y ¼ F xð Þ having n-dimensional independent inputs defined in the unit hyper-

cube ½0; 1�n: The Sobol’ decomposition of F xð Þ into summands of increasing dimensions can be represented as follows [47–
49]:
F x1; � � � ; xnð Þ ¼ F 0 þ
Xn
i¼1
F i xið Þ þ

X
1�i<j�n

F i;j xi; xj
� �þ � � � þ F 1;2;���;n x1; � � � ; xnð Þ; ð1Þ
where F 0 is a constant and the integral of each summand F i1 ;���;is xi1 ; � � � ; xis
� �

over any of its independent variables is zero. The
pairwise orthogonality of the summands in the decomposition (1) can be expressed in the following sense:
E F i1 ;���;is xi1 ; � � � ; xis
� �� F j1 ;���;jt xj1 ; � � � ; xjt

� �� � ¼ 0 for i1; � � � ; isf g – j1; � � � ; jtf g: ð2Þ

Integrate the square of Eq. (1) over ½0; 1�n and we can obtain the following equation:
Z

F 2 xð Þdx ¼ F 2
0 þ

Xn
i¼1

Z
F 2

i xið Þdxi þ � � � þ
Z
F 2

1;2;���;n x1; � � � ; xnð Þdx1 � � � dxn: ð3Þ
It can be easily deduced that
D ¼
Xn

i¼1Di þ
X

1�i<j�n
Di;j þ � � � þ

X
1�i1<���<is�n

Di1 ;���;is þ � � � þ D1;2;���;n; ð4Þ
where D is the total variance of F xð Þ, and Di1 ;���;is is the partial variance due to the interactive effect of fxi1 ; � � � ; xisg.
To this end, the Sobol’ indices are defined in the following form:
Si1 ;���;is ¼
Di1 ;���;is
D

: ð5Þ
Therefore, each sensitivity index Si1 ;���;is measures which amount of the total variance D is attributed to the uncertainties in
the input random variables fxi1 ; � � � ; xisg. The first-order sensitivity index Si represents the influence due to xi alone while the
higher order index accounts for the cooperative influence of various variables. To evaluate the total effect of an input variable
xi on the variance of y, the total sensitivity index STi is introduced as the sum of all partial sensitivity indices Si1 ;���;is involving
parameter i [49]:
STi ¼
X
fi

Sfi ; fi ¼ i1; � � � ; isð Þ : 9k;1 � k � s; ik ¼ if g: ð6Þ
The Sobol’ indices are usually computed by using Monte Carlo (MC) simulation [47,49,50]. However, a very large number
of model evaluations (e.g. 2n MC integrals needed for n input variables) are usually required to obtain accurate estimates,
which is obviously infeasible for a computationally demanding model. In this regard, represented in an orthonormal poly-
nomial basis, PCE can be used as a model substitute to reduce computational cost while keeping the prediction accuracy. In
addition, due to the nature of the PC basis, the sensitivity indices can be evaluated simply as analytical functions of the PC
coefficients [9].

3. Polynomial chaos approximation of the model response

3.1. Full PCE

The classic PCE of the model response y ¼ F xð Þ can be represented as follows:
y ¼ F xð Þ ¼
X
a2Nn

bawa xð Þ; ð7Þ
where a ¼ a1; � � � ;anð Þ (with ai � 0) is an n-dimensional index, and ba’s are unknown deterministic PC coefficients. The mul-
tivariate polynomial wa is the tensor product of normalized univariate orthogonal polynomials:
wa xð Þ ¼
Yn
i¼1

w ið Þ
ai

xið Þ: ð8Þ
Different types of univariate orthogonal polynomials commonly used for constructing PC are listed in Table 1 [19].
In practice, the PCE in Eq. (7) is usually truncated for computational purposes. A common way is to retain those polyno-

mials whose total degree aj j ¼Pn
i¼1ai does not exceed a given degree of p:
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Table 1
Common orthogonal polynomials and their associated ran-
dom variables.

Random variable Polynomial Support

Gaussian Hermite �1;1ð Þ
Uniform Legendre a; b½ �
Beta Jacobi a; b½ �
Gamma Laguerre 0;1½ Þ
Poisson Charlier 0;1;2; � � �f g
Binomial Krawtchouk 0;1;2; � � � ;nf g
Negative binomial Meixner 0;1;2; � � �f g
Hypergeometric Hahn 0;1;2; � � � ;nf g
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y ’ F p xð Þ ¼
X
a2Ap;n

bawa xð Þ;Ap;n ¼ a 2 N
n : aj j � pf g: ð9Þ
The expression of Eq. (9) is called the full PCE of degree p of the model response y. The total number of unknown PC coef-
ficients P can be calculated from the maximum degree p and the dimensionality n of inputs as follows:
P ¼ nþ p

p

� �
¼ nþ pð Þ!

n!p!
: ð10Þ
With such a truncation, the problem of characterizing the model response y is converted into computing a finite set of
unknown PC coefficients. This can be achieved using non-intrusive techniques, as described in the sequel.

3.2. Computation of the PC coefficients

In order to compute the PC coefficients, regression-based methods usually seek a PCE that satisfies:
F p xj
� � ¼ X

a2Ap;n

bawa xið Þ � F xj
� � ¼ yj; j ¼ 1; � � � ;N; ð11Þ
where N is the number of input–output samples. Eq. (11) can be rewritten in the form of y ¼ wb, where b 2 RP is a vector of
unknown PC coefficients, y 2 RN is a vector of N realizations of the model output, and w 2 RN�P is the measurement matrix of
which each column contains evaluations of the PC basis polynomials at the N samples. The PC coefficients are evaluated by
minimizing the residual between the model responses and the PCE approximation. For N � P, the unknown coefficients can

be computed using the least-squares regression: b ¼ wTw
� ��1

wTy. When N < P, the system equation for b becomes ill-posed,
and the least-squares approach is no longer feasible. To this end, some form of regularization is usually introduced to identify
a unique solution.

For a PCE with sufficient sparsity, the unknown PC coefficients in Eq. (11) in the case of N < P can be determined with
only a few terms of significant nonzeros by solving the following l1-minimization problem
min
b2RP

bj jj j1 subject to wb� yj jj j2 6 � ð12Þ
with an l2 norm constraint to account for the error � in the p-th degree truncation of the PCE. The constrained l1-
minimization problem in Eq. (12) can be reformulated as a regularized (unconstrained) optimization problem:
min
b2RP
E bð Þ ¼min

b2RP
bj jj j1 þ k wb� yj jj j22

n o
; ð13Þ
where the first term of the objective (or energy) function E bð Þ gives the l1 norm (sparsity) of the PC coefficients, while the
second term measures how well the approximation fits the true model response in the sense of l2 norm and needs to be
penalized heavily for more accurate solutions. The so-called regularization parameter k controls the relative weight of the
two terms. Eq. (13) is known as the LASSO-based regression problem [35,40] or general l1-minimization problem [41], which
can be solved by two main categories of approaches: basis pursuit [51] and greedy algorithms [43,52]. In the present paper,
GCD based algorithm is proposed in Section 4 to solve the above Eq. (13) for building a sparse PCE, and compared with two
well-established greedy methods: OMP [43,52] and LAR [24].

3.3. Definition of sparse PCE

Let A be a non-empty finite subset of Nn, and the truncated PCE can be defined by:
FA xð Þ ¼
X
a2A

bawa xð Þ: ð14Þ
4
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In the sequel, set A is called the truncation set. The common truncation scheme in Eq. (9) corresponds to the choice
A ¼ Ap;n, which is called the full PCE of the model response. Since the large cardinality of this set may make the computa-
tional cost unaffordable, the determination of truncation set A of small cardinality is of interest. This allows one to define the
index of sparsity of A by:
IS ¼ card Að Þ
card Apmax ;nð Þ ; pmax ¼max

a2A
aj jð Þ; ð15Þ
where card Að Þ denotes the number of elements inA, pmax corresponds to the degree of the truncated PCE in Eq. (14). A PCE in
(14) is said to be sparse if the index of sparsity IS is small enough compared to 1. The benefits of a sparse PCE are two-fold
[46]: (1) to improve the convergence rate for GCD and (2) to allow for sparse data structures to reduce memory requirement
and faster matrix–vector multiplications. Moreover, the degree and interaction order of any index a in A are respectively
defined by:
pa ¼ aj j ¼
Xn
i¼1

ai; ga ¼
Xn
i¼1

ai>0; ð16Þ
where ai>0 ¼ 1 if ai > 0 and 0 otherwise.

3.4. PC-based global sensitivity indices

Let us define a subset of multidimensional indices Li1 ;���;is in the following sense:
Li1 ;���;is ¼ a 2 A :
ak > 0 k 2 i1; � � � ; isð Þ; 8k ¼ 1; � � � ;n
ak ¼ 0 k R i1; � � � ; isð Þ; 8k ¼ 1; � � � ;n

� 	
: ð17Þ
Then, the sparse PCE in Eq. (14) can be rewritten according to Sobol’ decomposition:
FA xð Þ ¼ b0 þ
Xn
i¼1

X
a2Li

bawa xið Þ þ
X

1�i1<i2�n

X
a2Li1 ;i2

bawa xi1 ;xi2
� �þ � � � þ X

1�i1<���<is�n

X
a2Li1 ;���;is

bawa xi1 ; � � � ;xis
� �þ � � � þ X

a2L1;���;n
bawa xð Þ

ð18Þ

where each summand in Eq. (1) can be identified as follows: F i1 ;���;is xi1 ; � � � ; xis

� � ¼Pa2Li1 ;���;is
bawa xi1 ; � � � ; xis

� �
.

Due to the orthonormality of the basis polynomials, it can be easily derived from the sparse PCE representation Eq. (18)
that the total and partial variances are respectively:
DA ¼
X

a2An 0f g
b2
a; DAi1 ;���;is ¼

X
a2Li1 ;���;is

b2
a: ð19Þ
Then, the PC-based Sobol’ indices SAi1 ;���;is and total sensitivity indices ST;Ai obtained from the above equations are
respectively:
SAi1 ;���;is ¼
DAi1 ;���;is
DA

; ST;Ai ¼
X
a:ai>0

SAa : ð20Þ
Once the sparse PCE of the model response is built, the Sobol’ indices can be obtained analytically at a negligible compu-
tational cost for GSA. To this end, a novel BGCD algorithm to efficiently build a sparse PCE is proposed in the next section.

4. Bregman-iterative GCD for sparse PCE

To build a sparse PCE by solving the above LASSO-based optimization problem raises two concerns: one is to develop an
effective algorithm for minimizing the objective function E bð Þ, and the other is how to determine the regularization param-
eter k. In this section, a novel algorithm based on the integration of GCD and Bregman iteration is developed for sparse PCE
construction. First, GCD is newly developed to solve the LASSO-based regression problem (13) for building sparse PCE. Sec-
ond, Bregman iteration is incorporated into the GCD to form a novel BGCD algorithm, which on one hand solves the ineffi-
ciency in determining the regularization parameter, and on the other hand improves the accuracy and convergence of the
GCD. Finally, the detailed procedures of proposed algorithm are provided.

4.1. Constructing sparse PCE with GCD

In multivariable minimization, CD algorithms minimize the objective by successively solving scalar minimization sub-
problems along all coordinates that correspond to the PC basis polynomials wa xð Þ in this study. In this regard, CD is attractive
due to the fact that scalar minimization is simpler than multivariable minimization, and efficient when the subproblems can
5
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be solved quickly. In the PCD [34,36], the coordinates are visited in a sequential order to reach a minimum. For some prob-
lems, however, the order in which the coordinates are visited may have a significant effect on the rate of convergence. There-
fore, a GCD with an adaptive order [40] that converges faster than the PCD is employed in this study.

The objective function E bð Þ in the LASSO-based regression problem (13) has the additive decomposition in the form of
E b1; � � � ;bPð Þ ¼ gðb1; � � � ; bPÞ þ
XP
j¼1

hjðbjÞ; ð21Þ
where gðbÞ ¼ kkwb� yk22 : RP ! R is differentiable and convex, and the univariate functions hjðbjÞ ¼ bj



 

 : R! R are convex
(but not necessarily differentiable). It was shown by Tseng [53] that for any convex objective function E with the separable
structure (21), the CD algorithm is guaranteed to converge to the global minimizer. The key property underlying this result is
the separability of the nondifferentiable component hðbÞ ¼PP

j¼1hjðbjÞ, as a sum of functions of each individual parameter.
This ensures the minimization problem (13) to be solved by CD algorithm through a sequence of one-dimensional
optimizations.

For each coordinate subproblem, all components of b except the j-th component bj are fixed. Let /j denote the j-th column
of w, /ij the element of w in the i-th row and j-th column, and yi the i-th component of y, the problem is to minimize:
min
bj

bj



 

þX
k–j

bkj j þ k
XN
i¼1

/ijbj þ
X
k–j

/ikbk � yi

 !2
8<
:

9=
;: ð22Þ
From the theory of convex analysis, it is known that necessary and sufficient conditions for a solution to problem (22)
take the form [54]
sj þ 2k
XN
i¼1

/ijbj � yi
� �

/ij ¼ 0; ð23Þ
where sj is a subgradient of bj



 

 and equal to signðbjÞ if bj–0 and some value lying in �1;1½ � otherwise. It is seen from Eq. (22)
that solution for each bj can be expressed succinctly in terms of the partial residual rj ¼ yi �

P
k–j/ikbk, which removes from

the outcome the current fit from all but bj. As a result, bj is updated as
b
	

j ¼ 1

k/jk22
shrink cj;

1
2k

� �
; ð24Þ
where k/jk22–0 is assumed; otherwise, /ij ¼ 0 for any i, and the whole j-th column of w can be deleted. The shrink operator
(i.e. soft-thresholding operator [54]) is defined as:
shrink y;lð Þ ¼ sgnðyÞmax yj j � l; 0f g ¼
y� l;
0;

yþ l;

8><
>:

if y 2 l;1ð Þ;
if y 2 �l;l½ �;

if y 2 �1;�lð Þ
ð25Þ
with cj ¼
P

i/ij yi �
P

k–j/ikbk

� �
. The overall algorithm operates by applying this shrink update (24) repeatedly in some fixed

manner, updating the coordinates of b
	

(and hence the residual vector) along the way.
To build the sparse PCE efficiently, in this paper the coordinate that produces the largest decrease in the energy function is

selected:
j
 ¼ argmax
j

DEj: ð26Þ
where DEj ¼ E b1; � � � ; bj; � � � ; bP

� �� E b1; � � � ; b
	

j; � � � ; bP

� �
. Thus, computational savings are obtained by updating cj instead of

entirely recomputing it through every iteration. The following expression for cj can be obtained:
ckþ1j � ckj ¼ /T
j w bk � bkþ1
� �

þ k/jk22 bkþ1
j � bk

j

� �
: ð27Þ
Suppose the q-th coordinate is chosen to be updated in the k-th iteration, then bkþ1 � bk is non-zero only in the q-th coor-

dinate. So, bkþ1 � bk ¼ bkþ1
q � bk

q

� �
eq, where eq is the q-th standard basis vector. Eq. (27) becomes
ckþ1 � ck ¼ bkþ1
q � bk

q

� �
k/qk22I � wTw
� �

eq: ð28Þ
The above steps of Eqs. (24)–(28) constitute the GCD algorithm for solving the minimization problem Eq. (13) as in the
sequel.
6
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4.2. Modification of GCD-based sparse PCE with Bregman iteration

In the preceding algorithm, the value of regularization parameter k affects the accuracy of the obtained PC coefficients. On
one hand, large k is preferred to heavily penalize the approximation fitness of l2 norm in Eq. (13) for more accurate solutions.
On the other hand, if k is of big value, the threshold of 1

k is very small which consequently leads to slow convergence by using
the GCD algorithm. To tackle this situation, Bregman iteration [41] is adopted in combination with the above GCD to conquer
the inefficiency issue of k.

Bregman distance [55] based on a convex functional J �ð Þ between points b and t is
Bc
J t;bð Þ ¼ J tð Þ � J bð Þ � ht� b; ci; ð29Þ
where c 2 @J bð Þ is an element in the subgradient of J at the point b. Here, J bð Þ ¼ kbk1, and the convex and differentiable func-

tion H b; yð Þ ¼ kkwb� yk22. After the PC coefficients bkþ1 are iteratively solved by using the GCD procedures as in Section 4.1:
bkþ1  argmin
b

J bð Þ þ kkwb� ykk22; ð30Þ
Bregman iteration is introduced as follows:
ykþ1  y þ yk � wbkþ1
� �

: ð31Þ
The advantages of using Bregman iteration are two-fold: (1) for any k in the subproblem (see Eq. (30)), Bregman iteration
will converge to the exact solution of the constrained problem Eq. (12). In this regard, k should be selected such that the
subproblem can be solved efficiently. As stated before, a very big k results in slow convergence. In the other extreme, when
k is too small, more Bregman iterations are needed. So the optimal value for k is something intermediate. Numerical exper-
iments show that, by choosing an appropriate k, both the subproblems can be solved quickly and few Bregman iterations are
needed; (2) due to the efficiency of Bregman iteration, it is not necessary to solve the subproblem (see Eq. (30)) very accu-
rately, which is computationally demanding. In other words, with the help of few Bregman iterations, the solution accuracy
can be enhanced on top of solving the LASSO-based regression problem Eq. (13) by the GCD.
4.3. The proposed algorithm

The flowchart of the BGCD for sparse PCE is illustrated in Fig. 1. It has two layers of loops: (1) the inner loop uses GCD to
solve the subproblems of Eq. (13) always along the coordinate producing the largest decrease in the energy function E bð Þ,
and obtain the optimal value of b through iterating c; (2) the outer loop adopts Bregman iteration for fast convergence
and accuracy enhancement of the PC coefficients through updating the response value y.

Suppose an experimental design x ¼ x 1ð Þ; x 2ð Þ; � � � ; x Nð Þ� �
with N realizations is generated. The Sobol’ quasi-random

sequence [56], also known as low discrepancy sequences, is adopted for generating samples in this research due to its space
filling property. After running the model at the design points, the corresponding model responses of interest are gathered
into the vector y ¼ y 1ð Þ; y 2ð Þ; � � � ; y Nð Þ� �

. The proposed algorithm is outlined as follows:
Step 1 (Initialization): Define the total degree p and interaction order g of the full PCE. Set P ¼ card Ap;nð Þ and define the

basis polynomial vector w ¼ w1;w2; � � � ;wPð Þ associated toAp;n. Since the BGCD algorithm is devised for underdetermined case
with fewer equations than unknown PC coefficients, the basis polynomial order should be selected with the requirement of
P > N. Then, the following initial vectors are defined: c1 ¼ wTy; b0 ¼ 0; and y0 ¼ 0.

Step 2 (Calculating the optimal value for b): Define the regularization parameter k ¼ p� nþ 2, calculatew ¼ diag wTw
� �

and

obtain the optimal value b
	

k ¼ shrink ck

w ; 1
2kw

� �
in the k-th iteration with Eq. (24).

Step 3 (Comparison of the iterated PC coefficients): Calculate the differences between the PC coefficients obtained in the k-
th and (k-1)-th iterations, and compare

P
iDbi with a given threshold value Tol1. As Bregman iteration will be used in the

outer loop, the subproblem in Eq. (30) is not necessary to be solved very accurately. In this study, the threshold value used
for Tol1 ranges from 10�6 to 10�4.

Step 4 (Updating the coordinate with the largest energy decrease): If
P

iDbi > Tol1, choose the coordinate which produces

the largest decrease in the energy function with Eq. (26). Then, according to Eq. (28), update bkþ1
i ¼ bk

i for i–j, bkþ1
j ¼ b

	
k
j ,

ckþ1 ¼ ck þ bk
j � b

	
k
j

� �
wTw�wjI
� �

ej and ckþ1j ¼ ckj . Set k ¼ kþ 1, and resume from Step 2. When
P

iDbi � Tol1, continue Step

5 of the algorithm.

Step 5 (Bregman iteration for updating y): If kwb
k�yk2
kyk2 > Tol2, update ykþ1 ¼ y þ yk � wbkþ1

� �
. Set k ¼ kþ 1 and go back to

Step 2. When kwb
k�yk2
kyk2 � Tol2, the stopping criterion is satisfied, and the optimal value of PC coefficients is obtained. As Breg-

man iteration can enhance the accuracy in solving the general l1-minimization problem by using GCD within few iterations,
the threshold value of Tol2 can be much larger compared to that of Tol1. In this study, Tol2 from 10�3 to 10�2 is adopted.
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Fig. 1. Flowchart of the BGCD for sparse PCE.
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GCD consists of Step 2 to Step 4, and Bregman iteration is adopted in Step 5. Thanks to Bregman iteration, an intermediate
value of k can be selected so that the coordinate subproblems can be solved quickly by the GCD, and as few as one to eight
Bregman iterations are needed to get converged solutions, as demonstrated in the following section. In this work,
k ¼ p� nþ 2 is used according to the problem dimensionality n and the PCE degree p for all numerical examples in Section 5.
8



Fig. 2. Ishigami function–Convergence of the objective function with different degrees of the PCE and samples: p = 10, 12 and 14, and N = 75, 95 and 115.
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5. Numerical examples

This section is devoted to the validation and evaluation of the proposed algorithm for building sparse PCE. Three bench-
mark functions are first considered: the Ishigami function, Sobol’ function and Morris function. The overall performances of
the proposed BGCD algorithm are compared with the PCD, GCD, OMP, LAR and two adaptive algorithms [45,10]. Both OMP
and LAR are with a MATLAB implementation called SparseLab available at http://sparselab.stanford.edu/. The quality of the
sparse PCE model is tested with different samples and degrees of the PCE. The estimated sensitivity indices are compared to
analytical values by evaluating the following sensitivity index error:
eS ¼
Xn
i¼1

SAi � Sexacti




 


þXn
i¼1

ST;Ai � ST;exacti




 


; ð32Þ
where the superscript ‘‘exact” stands for the analytical value. The good performance of the developed algorithm is eventually
demonstrated on two engineering examples of finite element analysis, consisting of a planar and a spatial truss structure
with 9 and 21 input random variables respectively.

5.1. Example 1: Ishigami function

Let us consider the Ishigami function of high nonlinearity and non-monotonicity, which is widely used for benchmarking
in GSA [57]:
Y ¼ sin X1 þ asin2X2 þ bX4
3sin X1; ð33Þ
where the input variables Xi i ¼ 1; 2; 3ð Þ are uniformly distributed over �p;p½ �, a ¼ 7 and b ¼ 0:1. Note that this function is
sparse in nature since: (1) the model has three independent variables but the maximum interaction order is 2; (2) the func-
tion is of even order with respect to the variables X2 and X3, hence the odd polynomials of these variables are zero in the PCE.
9
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Fig. 3. Ishigami function–CPU time (s) for (a) 75 and (b) 95 samples with different degrees of the PCE.
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The sensitivity indices of the model response (33) can be calculated analytically as in [16]. Here, they are approximated by
postprocessing a sparse PCE of the model response according to Eq. (20). The sparse PC coefficients are evaluated using Sobol’
quasi-random sequences of different sizes N = 55, 65, . . ., 115. The degree p of the PCE varies from 8 to 15.

First, the convergence and computational efficiency of the GCD (without Bregman iteration) and PCD are compared. Fig. 2
represents the value of the objective function varying with iterations using different degrees of the PCE and samples. The
algorithm terminates if the difference of the objective function values between two consecutive iterations is less than
10�3. It is observed that when N is fixed at 75 with p varying from 10 to 14 (see Fig. 2(a)–(c)), the number of iteration for
PCD to converge increases rapidly from 2068 to 4166 whereas that for GCD to converge changes slightly from 1953 to
1783. Similar observations are obtained for respective N = 95 and N = 115 with p varying from 10 to 14 (see Fig. 2(d)–
(i)): the numbers of iteration for PCD to converge increase respectively from 1645 to 4156 and from 1193 to 3490, whereas
those for GCD to converge vary slightly from 242 to 311 and from 227 to 219 respectively. This indicates that the conver-
gence velocity of the objective function by using PCD is negatively related to the degree of the PCE, whereas that by using
GCD does not change much with respect to p. On the other hand, it is found that when p is respectively fixed at 10, 12 and 14
with N varying from 75 to 115, the convergence velocity of the objective function by using either PCD or GCD is positively
related to the sample number. It is worth noting that when N = 75, the convergence velocity of the objective function by
using GCD is at a similar level to that by using PCD. However, the convergence velocity of the objective function by using
GCD is 6 to 12 times faster than that by using PCD when N is increased to 95, and 4 to 15 times faster than that by using
PCD if N is further increased to 115. Comparisons of the CPU time (with an AMD 3.60 GHz CPU and 16 GB RAM, the same
below) for N = 75 and 95 with different degrees of the PCE and for p = 10 and 12 with different samples by using GCD
and PCD are shown in Fig. 3 and Fig. 4, respectively. As the degree of the PCE or sample varies, the CPU time by using
PCD changes more significantly than that by using GCD. In this example, GCD is 10 to 160 times more efficient than PCD
for the considered p and N. Considering the results of both the convergence velocity of the objective function in Fig. 2
and CPU time in Figs. 3 and 4, N = 95 and p ¼ 10 are recommended for the GCD in this example. For other examples in this
paper, similar strategy can be applied to determine the optimal values of N and p.

Second, effects of Bregman iteration and two threshold values (Tol1 and Tol2) on the accuracy and efficiency of the GCD
are investigated. Table 2 lists the results of sensitivity index error eS and CPU time varying with different values of Tol1 and
Tol2 using N = 95 andp = 10. It is found that for GCD (without Bregman iteration), the sensitivity index error will not reduce
10



Fig. 4. Ishigami function–CPU time (s) for (a) p = 10 and (b) p = 12 with different samples.
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any more as Tol1 decreases to 10�5. However, for GCD with Bregman iteration (i.e. the proposed BGCD), the accuracy of esti-
mated sensitivity indices improves for Tol2 = 10�3 and 10�4 as compared with that for the GCD. Nevertheless, the needed
Bregman iterations and resulting CPU time for Tol2 = 10�4 are one to three orders of magnitude more than those for
Tol2 = 10�3 and 10�2 respectively. On the other hand, when Tol2 varies from 10�2 to 10�5 with Tol1 fixed respectively at
10-4, 10-5 and 10-6, the sensitivity index error has relatively lower values for Tol2 = 10�4 to 10�2. It is also noted that when
Tol1 is bigger than Tol2 (e.g. Tol1 = 10-3 > Tol2 = 10-4, Tol1 = 10-4 > Tol2 = 10-5), the proposed BGCD produces large errors even
with 1000 Bregman iterations. To have a better trade-off between the accuracy and efficiency for the BGCD, the following
findings between Tol1 and Tol2 can be summarized from the above analysis: (1) the value of Tol1 should be less than that
of Tol2, i.e. Tol1 6 Tol2; (2) the ranges of Tol1 and Tol2 are recommended to be 10-6–10-4and 10-3~10-2, respectively. These
are in accordance with the partial functionality of Bregman iteration, which is devised to enhance the accuracy of GCD in
just few iterations (e.g. 1 to 3 iterations for the Ishigami function). Therefore, the threshold value of Tol2 for Bregman iter-
ation is logically set to be two to three orders of magnitude larger than that of Tol1 for GCD.

Third, effect of the regularization parameter k on the accuracy, efficiency and sparsity of the sparse PCE by the BGCD is
studied. Fig. 5 depicts the results of the sensitivity index error, CPU time and index of sparsity for k varying within a broad
range of ½10-3; 105�. It is observed that for k smaller than 101, although the CPU time and index of sparsity are desirable, the
sensitivity index error increases rapidly as k decreases. On the other hand, for k bigger than 103, although the sensitivity
index error has a slower increase, the CPU time is one to two orders of magnitude more than that for k smaller than 101.
The index of sparsity approaches to 0.95 if k equals 2� 104, meaning that the level of sparsity is very minimum. To this
end, an appropriate range of ½101; 103� for k is recommended, which yields a good trade-off among the accuracy, efficiency
and complexity (sparsity) for the developed sparse PCE. In this paper, for the purpose of simplicity, k is proposed to be pro-
portional to the dimensionality of the problem and degree of the PCE with a unified formulation: k ¼ p� nþ 2. It is worth
noting that the accuracy of sensitivity indices can be further improved if the optimal value of k based on the above paramet-
ric analysis is used, i.e. k ¼ 100 instead of k ¼ 10� 3þ 2 ¼ 32 for the Ishigami function.
11



Table 2
Ishigami function–Comparison of sensitivity index error and CPU time with different threshold values using N = 95 and p = 10.

Algorithm Tol1 Tol2 Sensitivity index error Bregman iterations CPU time (s)

GCD 1.00E-03 – 1.43E-03 – 0.001
1.00E-04 9.51E-04 0.002
1.00E-05 9.12E-04 0.004
1.00E-06 9.26E-04 0.005
1.00E-07 9.28E-04 0.005

BGCD 1.00E-03 1.00E-02 1.43E-03 1 0.002
1.00E-04 9.51E-04 1 0.003
1.00E-05 9.12E-04 1 0.004
1.00E-06 9.26E-04 1 0.005
1.00E-07 9.28E-04 1 0.006
1.00E-03 1.00E-03 1.42E-03 3 0.004
1.00E-04 9.96E-04 2 0.004
1.00E-05 5.60E-04 2 0.009
1.00E-06 5.76E-04 2 0.012
1.00E-07 5.73E-04 2 0.015
1.00E-03 1.00E-04 1.32E-03 1000 0.949
1.00E-04 9.57E-04 44 0.125
1.00E-05 8.76E-04 31 0.248
1.00E-06 8.56E-04 26 0.616
1.00E-07 8.57E-04 26 1.149
1.00E-04 1.00E-02 9.51E-04 1 0.002

1.00E-03 9.96E-04 2 0.004
1.00E-04 9.57E-04 44 0.126
1.00E-05 1.44E-03 1000 3.595

1.00E-05 1.00E-02 9.12E-04 1 0.004
1.00E-03 5.60E-04 2 0.247
1.00E-04 8.76E-04 31 0.261
1.00E-05 9.56E-04 157 1.849

1.00E-06 1.00E-02 9.26E-04 1 0.005
1.00E-03 5.76E-04 2 0.012
1.00E-04 8.56E-04 26 0.616
1.00E-05 1.00E-03 144 5.624
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Lastly in this example, sensitivity analysis results in terms of eS by the proposed BGCD are compared with two well-
established greedy algorithms, i.e. OMP and LAR, for different degrees of the PCE (p = 8, 9, . . ., 15) using 95 samples, as pre-
sented in Table 3. It is obvious that the proposed BGCD has superior accuracy than both OMP and LAR for all eight cases while
the performances of OMP and LAR vary with different degrees of the PCE. As for the index of sparsity, the BGCD always out-
performs OMP and LAR for all degrees of the PCE. In terms of Bregman iterations, the maximum number is 8, and it ranges
from 1 to 2 for higher degrees of the PCE such as p ¼ 10 	 15. As a result, the CPU time by using BGCD is at similar level to
that with LAR as p increases, which is a bit more than that by OMP. In addition, the Sobol’ and total sensitivity indices
obtained by sparse PCEs based on the proposed BGCD and two adaptive algorithms [45,10] are compared in Table 4. The
number of model evaluations (N) and degree of the PCE (p) in the benchmark adaptive algorithm [45] are used for the BGCD,
while the results by sparse PCE [10] with similar numbers of N and p are adopted for comparison. It is observed that the
proposed BGCD outperforms two benchmark adaptive algorithms [45,10] for 7 and 10 out of 10 sensitivity indices, respec-
tively. It is worth noting that, compared with the adaptive algorithms which sequentially selects the important basis poly-
nomials from the full PCE, the proposed BGCD can efficiently build an optimal sparse PCE with the significant basis
polynomials based on a one-time screening effort.

5.2. Example 2: Sobol’ function

Let us consider now the Sobol’ function [47]:
Y ¼
Yn
i¼1

4Xi � 2j j þ ai
1þ ai

; ð34Þ
where the input variables Xi; i ¼ 1; 2; . . . ; n; are uniformly distributed over 0;1½ � and ai’s are non-negative constants, gath-
ered into the vector a. For numerical application, the number of input variables is set as n = 8 with
a ¼ 1; 2; 5; 10; 20; 50; 100; 500f g, and the interaction order is set as g = 4. The sensitivity indices of Y can be derived ana-
lytically. Here, same as done in the previous example, they are estimated by postprocessing a sparse PCE of the model
response Y . The sparse PC coefficients are evaluated using Sobol’ quasi-random sequences with N = 300, 350, . . ., 700. The
degree of the PCE is adopted as p ¼ 3;4; . . . ;9. As analysed in the previous example, the threshold vales for the BGCD are
set as Tol1 = 10�4 and Tol2 = 10�2 in this example.
12



Fig. 5. Ishigami function–Effect of the regularization parameter k on the (a) accuracy, (b) efficiency and (c) sparsity of the sensitivity indices by sparse PCE
using the BGCD.
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Convergence of the objective function by using GCD without Bregman iteration and PCD is illustrated in Fig. 6 for p = 5
and N = 300. It is found that by using GCD, the objective function reaches the final converged value of 8.376 in 490 iterations.
However, PCD needs 48,324 iterations, which are around 99 times of those taken by GCD, to obtain the same result. Fig. 7
depicts comparison of the CPU time between GCD and PCD for N = 300 with different degrees of the PCE. It is observed that,
as p varies from 3 to 7, the CPU time needed by PCD increases exponentially from 0.007 (7� 10�3) to 4401.372
(� 4:401� 103) s, while the time taken by GCD has a slight increment from 0.002 to 0.318 s only. Comparing the conver-
gence and efficiency results between GCD and PCD for this and previous examples, it is believed that as the number of PC
coefficients increases (e.g. from 3þ12ð Þ!

3!12! ¼ 455 for Ishigami function to 8þ5ð Þ!
8!5! ¼ 1287 for Sobol’ function), the superiority of

GCD over PCD will become more and more significant. This is one of the main motivations to develop GCD-based algorithm
for building sparse PCE, and has also been validated with the following examples. Nevertheless, for the sake of brevity, com-
parisons of the convergence and efficiency between GCD and PCD will not be presented in the sequel.

Sensitivity index errors by the proposed BGCD are compared with those by OMP and LAR in Table 5 for different samples
and degrees of the PCE. It is observed that BGCD outperforms both OMP and LAR for all cases of combinations with N = 300,
13



Table 3
Ishigami function–Sensitivity index errors with different degrees of the PCE using 95 samples.

Degree Algorithm Sensitivity index error Index of sparsity Bregman iterations CPU time (s)

8 BGCD 0.0097 0.75 8 0.177
OMP 0.0270 0.87 – 0.006
LAR 0.0538 0.86 – 0.026

9 BGCD 0.0106 0.63 4 0.067
OMP 0.0220 0.70 – 0.006
LAR 0.0637 0.69 – 0.028

10 BGCD 0.0006 0.28 2 0.009
OMP 0.0035 0.55 – 0.005
LAR 0.0011 0.57 – 0.021

11 BGCD 0.0009 0.16 1 0.007
OMP 0.0060 0.45 – 0.006
LAR 0.0017 0.48 – 0.023

12 BGCD 0.0000 0.14 2 0.013
OMP 0.0004 0.35 – 0.005
LAR 0.0025 0.40 – 0.015

13 BGCD 0.0000 0.12 2 0.014
OMP 0.0005 0.28 – 0.005
LAR 0.0000 0.34 – 0.013

14 BGCD 0.0000 0.10 2 0.015
OMP 0.0011 0.26 – 0.005
LAR 0.0001 0.27 – 0.013

15 BGCD 0.0000 0.09 2 0.019
OMP 0.0005 0.23 – 0.008
LAR 0.0012 0.26 – 0.018

Table 4
Ishigami function–Estimates of the sensitivity indices by sparse PCEs based on the proposed BGCD and two adaptive algorithms.

Sensitivity indices Analytical results The proposed BGCD Sparse PCE [45] Sparse PCE [10]

S1 0.31 0.31 0.32 0.29
S2 0.44 0.45 0.44 0.43
S3 0.00 0.00 0.00 0.00
S1;2 0.00 0.00 0.00 0.01
S1;3 0.24 0.24 0.25 0.25
S2;3 0.00 0.00 0.00 0.00
S1;2;3 0.00 0.00 0.00 0.01

ST1 0.56 0.55 0.56 0.57

ST2 0.44 0.45 0.44 0.46

ST3 0.24 0.24 0.23 0.27

Model evaluations 58 58 84
Degree of the PCE 9 9 7

Fig. 6. Sobol’ function–Convergence of the objective function for p = 5 and N = 300.
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350, . . ., 700 and p = 5, 7, 9 except for the case of N = 500 and p = 7. Also, LAR has better accuracy than OMP for most cases as
in the previous example. The values of index of sparsity IS by using BGCD are at similar levels to those by using OMP and LAR
14



Fig. 7. Sobol’ function–Comparison of CPU time between GCD and PCD for N = 300 with different degrees of the PCE.
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in this example. Furthermore, the number of Bregman iterations used in the BGCD is 2 for the case of N ¼ 700 and p ¼ 5, and
1 for other 26 cases. Comparisons of CPU time among BGCD, OMP and LAR for p = 5, 7 and 9 with different samples are shown
in Fig. 8. It is found that as the number of samples increases, the CPU time taken by BGCD has very minimal change. On the
contrary, there is a considerable increase of the CPU time spent by both OMP and LAR, especially LAR. As a result, the supe-
riority of BGCD over OMP and LAR in computational efficiency becomes more notable as the number of samples increases.
Moreover, the results of Sobol’ and total sensitivity indices obtained by sparse PCEs based on the proposed BGCD and two
adaptive algorithms [45,10] are listed in Table 6. It is observed that with same or similar numbers of N and p, the proposed
BGCD outperforms two benchmark adaptive algorithms for 15 out of 16 sensitivity indices. It is worthy to note that the supe-
riority of the BGCD over the adaptive algorithms is also significant for the sensitivity indices (e.g. ST3-S

T
8) with relatively smal-

ler values.

5.3. Example 3: Morris function

In order to assess the proposed algorithm for high-dimensional problems, we consider now the so-called Morris function
[16]:
Table 5
Sobol’ f

eS

IS
Y ¼ b0 þ
X20
i¼1

biXi þ
X20
i<j

bijXiXj þ
X20
i<j<k

bijkXiXjXk þ
X20

i<j<k<l

bijklXiXjXkXl; ð35Þ
where
unction–Sensitivity analysis results with different samples and degrees of the PCE.

N Degree of the PCE = 5 Degree of the PCE = 7 Degree of the PCE = 9

BGCD OMP LAR BGCD OMP LAR BGCD OMP LAR

300 0.0520 0.4411 0.0865 0.0630 0.0944 0.1601 0.0269 0.0766 0.0623
350 0.0504 0.3634 0.0919 0.0454 0.1895 0.0725 0.0397 0.0500 0.0567
400 0.0636 0.4102 0.1729 0.0218 0.1236 0.0588 0.0215 0.0638 0.0307
450 0.0735 0.4908 0.1292 0.0358 0.1188 0.0716 0.0236 0.0614 0.1466
500 0.0775 0.5253 0.1574 0.0502 0.1475 0.0450 0.0170 0.0883 0.0235
550 0.0851 0.6885 0.8483 0.0462 0.2035 0.1257 0.0290 0.0841 0.3972
600 0.1065 0.5612 0.2614 0.0410 0.1576 0.0554 0.0210 0.0569 0.0231
650 0.1039 0.6595 0.3185 0.0273 0.2139 1.8796 0.0219 0.0719 0.0697
700 0.1913 0.8489 0.5561 0.0217 0.2056 0.0579 0.0135 0.0668 0.0163
300 0.29 0.24 0.24 0.07 0.06 0.06 0.02 0.02 0.02
350 0.33 0.28 0.28 0.08 0.07 0.07 0.02 0.02 0.02
400 0.36 0.32 0.32 0.09 0.08 0.08 0.03 0.03 0.03
450 0.41 0.36 0.37 0.09 0.09 0.09 0.03 0.03 0.03
500 0.41 0.40 0.41 0.10 0.10 0.10 0.03 0.03 0.03
550 0.47 0.44 0.45 0.12 0.11 0.11 0.03 0.04 0.04
600 0.52 0.48 0.49 0.14 0.12 0.12 0.04 0.04 0.04
650 0.54 0.52 0.53 0.16 0.13 0.13 0.05 0.04 0.04
700 0.64 0.56 0.57 0.15 0.13 0.14 0.05 0.05 0.05
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Fig. 8. Sobol’ function–Comparison of CPU time among BGCD, OMP and LAR for p = 5, 7 and 9 with different samples.
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Xi ¼
2 1:1xi= xi þ 0:1ð Þ � 0:5ð Þ if;i ¼ 3; 5; 7
2 xi � 0:5ð Þ otherwise

�
ð36Þ
and xi i ¼ 1; 2; . . . ; 20ð Þ are uniformly distributed over 0;1½ �. The coefficients bi are assigned as follows:
bi ¼ 20 for i ¼ 1; . . . ; 10
bij ¼ �15 for i; j ¼ 1; . . . ; 6
bijk ¼ �10 for i; j; k ¼ 1; . . . ; 5
bijkl ¼ 5 for i; j; k; l ¼ 1; . . . ; 4:

8>>><
>>>:

ð37Þ
The remaining coefficients are defined by b0 ¼ 0; bi ¼ ð�1Þi; bij ¼ ð�1Þiþj and bijk ¼ bijkl ¼ 0. Unlike the previous examples,
the Morris function is neither even or odd, and its dimensionality is high. Therefore, to make the computational cost afford-
able, the total degree of the PCE and interaction order is set as p = 3 and g = 3. The sensitivity indices are computed by post-
processing the sparse PCE, which is built using Sobol’ quasi-random sequences with N = 200, 300, 400, 500 and 900. The
16



Table 6
Sobol’ function–Estimates of the sensitivity indices by sparse PCEs based on the proposed BGCD and two adaptive algorithms.

Sensitivity indices Analytical results The proposed BGCD Sparse PCE [45] Sparse PCE [10]

S1 0.60 0.59 0.59 0.56
S2 0.27 0.27 0.25 0.22
S3 0.07 0.07 0.07 0.05
S4 0.02 0.02 0.01 0.02
S5 0.01 0.01 0.01 0.01
S6 0.00 0.00 0.00 0.00
S7 0.00 0.00 0.00 0.00
S8 0.00 0.00 0.00 0.00

ST1 0.63 0.61 0.63 0.59

ST2 0.29 0.29 0.28 0.26

ST3 0.08 0.08 0.10 0.10

ST4 0.02 0.03 0.03 0.05

ST5 0.01 0.01 0.03 0.03

ST6 0.00 0.01 0.02 0.04

ST7 0.00 0.01 0.02 0.03

ST8 0.00 0.01 0.01 0.03

Model evaluations 127 127 150
Degree of the PCE 4 4 6

Fig. 9. Morris function–Estimates of the ten greatest total sensitivity indices with different numbers of model evaluations by using the proposed BGCD.
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threshold values for the proposed BGCD are defined as Tol1 = 10�4 and Tol2 = 10�3. Herein, due to the high dimensionality of
Morris function, this example adopts a smaller threshold value of Tol2 = 10�3 as compared with Tol2 = 10�2 for the Sobol’
function.

Because there are no reference values for the Morris function, the quality of the estimation is evaluated by comparing the
sensitivity indices and their credible intervals. The 95% confidence intervals of these sensitivity indices are computed based
on crude MC simulation with 440,000 samples [10]. Estimates of the ten greatest total sensitivity indices with different num-
bers of model evaluations by using the proposed BGCD are plotted in Fig. 9. It is observed that as the number N of model
evaluations increases, almost all ten total sensitivity indices come close to the 95% confidence intervals. When N is equal
to 400, all ten total sensitivity indices are within the 95% confidence intervals, which allows one to correctly distinguish
three groups of input variables, namely, x1, x2 and x4 are important variables, x9 is intermediately important, and x3,
x5-x8, and x10-x20 are of little significance. As N further increases to 900, 8 out of 10 total sensitivity indices are around
the centers of the 95% confidence intervals.

Results of the ten greatest total sensitivity indices by using BGCD, OMP and LAR are compared in Table 7. It is shown that
the proposed BGCD yields the most accurate results of ten greatest total sensitivity indices which are all included in the MC
95% confidence intervals with both N = 400 and N = 500. Unlike the previous examples, LAR is less accurate than OMP in this
17



Table 7
Morris function–Results of the ten greatest total sensitivity indices.

Sensitivity indices BGCD OMP LAR MC 95% confidence intervals

ST4 0.24 0.26 0.24 0.25 0.24 0.24 [0.24, 0.27]

ST1 0.24 0.24 0.23* 0.22* 0.22* 0.23* [0.24, 0.27]

ST2 0.26 0.26 0.23* 0.24 0.23* 0.24 [0.24, 0.27]

ST9 0.16 0.16 0.16 0.16 0.16 0.17* [0.14, 0.16]

ST3 0.10 0.11 0.11 0.10 0.09* 0.09* [0.10, 0.12]

ST5 0.10 0.10 0.10 0.10 0.08* 0.08* [0.10, 0.12]

ST8 0.10 0.11 0.11 0.10 0.12* 0.11 [0.09, 0.11]

ST10 0.11 0.10 0.10 0.11 0.13* 0.13* [0.09, 0.11]

ST6 0.09 0.10 0.09 0.10 0.08 0.09 [0.08, 0.10]

ST7 0.08 0.07 0.07 0.07 0.08 0.07 [0.06, 0.08]

Model evaluations 400 500 400 500 400 500 440,000
Bregman iterations 1 1 – – – – –
CPU time (s) 0.357 0.319 0.263 0.689 0.990 2.258 –
Index of sparsity 0.56 0.70 0.22 0.27 0.23 0.28 –

* Results excluded from the MC 95% confidence intervals.

Table 8
Morris function–Estimates of the ten greatest total sensitivity indices by sparse PCEs based on the proposed BGCD and two adaptive algorithms.

Sensitivity indices MC 95% confidence intervals The proposed BGCD Sparse PCE [45] Sparse PCE [10]

ST4 [0.24, 0.27] 0.26 0.25 0.25

ST1 [0.24, 0.27] 0.24 0.25 0.25

ST2 [0.24, 0.27] 0.25 0.24 0.24

ST9 [0.14, 0.16] 0.16 0.16 0.15

ST3 [0.10, 0.12] 0.10 0.10 0.11

ST5 [0.10, 0.12] 0.10 0.11 0.10

ST8 [0.09, 0.11] 0.11 0.11 0.10

ST10 [0.09, 0.11] 0.10 0.11 0.11

ST6 [0.08, 0.10] 0.10 0.08 0.09

ST7 [0.06, 0.08] 0.07 0.08 0.07

Model evaluations 520 520 750
Degree of the PCE 3 4 11

Fig. 10. Schematic diagram of a planar truss structure.
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example. The number of Bregman iterations for the BGCD is 1 with both cases of model evaluations. In terms of computa-
tional efficiency, as the number of model evaluations increases from 400 to 500, the CPU time required by the proposed
BGCD decreases slightly from 0.357 to 0.319 s, whereas that taken by OMP and LAR increases from 0.263 and 0.990 s to
0.689 and 2.258 s, respectively. This is in accordance with the findings in the previous examples. The level of sparsity is also
depicted in Table 7. Although OMP and LAR produce sparser structures in this example, the proposed algorithm still yields a
18



Table 9
A planar truss structure–Input random variables with distribution parameters.

Input variable Distribution Mean Coefficient of variation

A1 Normal 2:5� 10�3m2 0.1

A2 Normal 1:185� 10�3 m2 0.1

A3 Normal 3:031� 10�3 m2 0.1

E1, E2, E3 Normal 2:1� 1011 Pa 0.1

FP1, FP2, FP3 Normal 5:0� 104 N 0.15

Table 10
A planar truss structure–Results of the Sobol’ and total sensitivity indices.

Variables Sobol’ indices Total sensitivity indices

MC BGCD OMP LAR MC BGCD OMP LAR

A1 0.086 0.085 0.086* 0.088 0.087 0.086* 0.088* 0.090
E1 0.086 0.086* 0.084 0.084 0.088 0.087* 0.086 0.087*
A2 0.132 0.129 0.130* 0.136 0.135 0.131 0.132* 0.140
E2 0.132 0.132* 0.136 0.134 0.135 0.135* 0.138 0.138
A3 0.030 0.030* 0.030* 0.029 0.031 0.030 0.031* 0.031*
E3 0.030 0.030* 0.028 0.031 0.031 0.030* 0.029 0.033
FP1 0.130 0.130* 0.129 0.124 0.130 0.130* 0.130* 0.126
FP2 0.238 0.241* 0.242 0.234 0.241 0.243* 0.243* 0.238
FP3 0.129 0.131 0.128 0.129* 0.130 0.132 0.129 0.130*
Model evaluations 4:4� 106 130 130 130 4:4� 106 130 130 130

Bregman iterations – 3 – – – 3 – –
CPU time (s) 3:8� 103 0.075 0.015 0.025 3:8� 103 0.075 0.015 0.025

Index of sparsity – 0.28 0.55 0.59 – 0.28 0.55 0.59

* Best results among the compared algorithms: BGCD, OMP and LAR.
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more accurate PCE. This demonstrates the proposed BGCD provides a better trade-off between model accuracy and complex-
ity. Also, Table 8 presents the estimates of the ten greatest total sensitivity indices obtained by sparse PCEs based on the
proposed BGCD and two adaptive algorithms [45,10]. The sensitivity indices obtained by the BGCD are closer to the centers
of the MC 95% confidence intervals for 8 out of 10 cases than those by Zhou et al. [45] with same/similar numbers of N and p,
and comparable to those by Blatman and Sudret [10] in which much larger numbers of N (i.e. 750� 520) and p (i.e. 11� 3)
were adopted.
5.4. Example 4: A planar truss structure

Let us consider a planar truss structure [58] sketched in Fig. 10, which comprises 14 horizontal, 7 vertical and 8 diagonal
bars. Three vertical loads are applied on the lower central portion of the truss. A finite element model made of 29 bar ele-
ments is used. Nine parameters are assumed to be random and modelled by independent input random variables, namely
the cross-sectional areas and Young’s moduli of the upper horizontal and outer diagonal bars, the vertical and inner diagonal
bars, and the lower horizontal bars (respectively denoted by A1, E1, A2, E2 and A3, E3) and the applied loads (denoted by FP1,
FP2, FP3), whose mean and coefficient of variation are given in Table 9. The sensitivity of the maximum deflection V of the
truss structure to each input variable is investigated. To this end, the Sobol’ indices and total sensitivity indices are derived
by postprocessing the sparse PCE built using Sobol’ quasi-random sequences with N = 130, p = 3 and g = 3. Same as those
used for the Sobol’ function, the threshold values for the proposed BGCD are set as Tol 1 = 10�6 and Tol 2 = 10�3 in this
example.

Results of the Sobol’ and total sensitivity indices by using BGCD, OMP and LAR are compared in Table 10. Reference results
are obtained using crude MC simulation (4.4� 106 inite element runs are performed as a whole). It is observed from Table 10
that the sensitivity indices associated with A1 and E1 (respectively A2 and E2, A3 and E3) are similar, due to the fact that these
variables have the same type of probability density function and coefficient of variation and the deflection V only depends on
them through the products E1A1, E2A2 and E3A3. The symmetry of the problem can also be reflected from the sensitivity
indices by giving similar significances to the symmetrically applied loads (e.g. FP1 and FP3), and greater sensitivity index
is logically attributed to the load (e.g. FP2) imposed on the midspan point than the loads away from it. The differences
between the total sensitivity indices and Sobol’ indices indicate small interactive effects of various input variables (i.e.
low interaction order). It can be concluded that the proposed BGCD yields the most accurate results for 12 out of 18 sensi-
tivity indices, while OMP is the second best. The level of sparsity generated by using BGCD outperforms that by using OMP
and LAR in this example.
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Fig. 11. Schematic diagram of a spatial truss structure.
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The sparse PCE constructed by the proposed BGCD with 130 model evaluations provides comparable sensitivity results
with those by crude MC simulation (N = 4.4 � 106). The number of Bregman iterations used is 3 for N = 130. In terms of com-
putational time, it appears that more than one hour (i.e. 3.8 � 103s) is needed for crude MC simulation with 4.4 � 106 model
evaluations. Therefore, the CPU time of building a sparse PCE is negligible compared to the cost of finite element simulations.
This demonstrates the practicability of the proposed algorithm for engineering applications.
5.5. Example 5: a spatial truss structure

The last example considers a 72-bar spatial truss structure [59] under lateral loads, as shown in Fig. 11. A finite element
model made of 72 bar elements is used. Twenty-one parameters are modelled by independent random variables: the length
of single horizontal or vertical bar (L), the Young’s moduli and cross-sectional areas of the vertical, horizontal, and first layer
to fourth layer diagonal bars (denoted by E1, A1 to E6, A6 respectively), and the applied wind loads (F1-F8), whose mean and
coefficient of variation are given in Table 11. The sensitivity of the maximum horizontal displacement of the truss structure
to each input variable is investigated. The Sobol’ and total sensitivity indices are derived by postprocessing the sparse PCE
built using Sobol’ quasi-random sequences with N = 600, p = 3 and g = 3. The threshold values for the proposed BGCD are set
as Tol1 = 10�6 and Tol2 = 10�3.

Results of the Sobol’ and total sensitivity indices by using BGCD, OMP and LAR are presented in Table 12. Reference results
are obtained using crude MC simulation with 18.4 � 107 finite element runs. Same as the phenomenon in Example 4, the
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Table 11
A spatial truss structure–Input random variables with distribution parameters.

Input variable Distribution Mean Coefficient of variation

L Normal 1 m 0.1
E1 Lognormal 2:1� 1011 Pa 0.1

A1 Lognormal 3:0� 10�3 m2 0.1

E2 Lognormal 2:1� 1011 Pa 0.1

A2 Lognormal 3:0� 10�3 m2 0.1

E3 Lognormal 2:1� 1011 Pa 0.1

A3 Lognormal 3:0� 10�3 m2 0.1

E4 Lognormal 2:1� 1011 Pa 0.1

A4 Lognormal 3:0� 10�3 m2 0.1

E5 Lognormal 2:1� 1011 Pa 0.1

A5 Lognormal 3:0� 10�3 m2 0.1

E6 Lognormal 2:1� 1011 Pa 0.1

A6 Lognormal 3:0� 10�3 m2 0.1

F1 Weibull 3:0� 105 N 0.15

F2 Weibull 3:0� 105 N 0.15

F3 Weibull 4:0� 105 N 0.15

F4 Weibull 4:0� 105 N 0.15

F5 Weibull 5:0� 105 N 0.15

F6 Weibull 5:0� 105 N 0.15

F7 Weibull 6:0� 105 N 0.15

F8 Weibull 6:0� 105 N 0.15

Table 12
A spatial truss structure–Results of the Sobol’ and total sensitivity indices.

Variables Sobol’ indices Total sensitivity indices

MC BGCD OMP LAR MC BGCD OMP LAR

L 0.418 0.417* 0.416 0.409 0.421 0.423 0.422* 0.417
E1 0.183 0.181* 0.181* 0.176 0.185 0.184* 0.184* 0.181
A1 0.182 0.182* 0.182* 0.178 0.185 0.185* 0.186 0.183
E2 0.001 0.001* 0.001* 0.001* 0.001 0.001* 0.001* 0.003
A2 0.001 0.001* 0.001* 0.001* 0.001 0.001* 0.001* 0.003
E3 0.009 0.010* 0.010* 0.010* 0.010 0.010* 0.010* 0.012
A3 0.010 0.009 0.010* 0.009 0.010 0.010* 0.011 0.011
E4 0.002 0.002* 0.002* 0.003 0.002 0.002* 0.002* 0.005
A4 0.002 0.002* 0.002* 0.002* 0.002 0.002* 0.002* 0.004
E5 0.001 0.001* 0.001* 0.001* 0.001 0.001* 0.001* 0.003
A5 0.001 0.001* 0.001* 0.001* 0.001 0.001* 0.001* 0.003
E6 0.000 0.000* 0.000* 0.000* 0.000 0.000* 0.000* 0.001
A6 0.000 0.000* 0.000* 0.000* 0.000 0.000* 0.000* 0.002
F1 0.000 0.000* 0.000* 0.000* 0.000 0.000* 0.000* 0.002
F2 0.000 0.000* 0.000* 0.000* 0.000 0.000* 0.000* 0.001
F3 0.003 0.003* 0.003* 0.004 0.004 0.003 0.004* 0.006
F4 0.003 0.004 0.004 0.003* 0.004 0.004* 0.004* 0.006
F5 0.020 0.020* 0.019 0.019 0.020 0.020* 0.020* 0.022
F6 0.020 0.020* 0.019 0.018 0.021 0.020* 0.020* 0.022
F7 0.069 0.069* 0.069* 0.072 0.071 0.071* 0.070 0.077
F8 0.069 0.069* 0.068 0.068 0.071 0.070 0.070 0.071*
Model evaluations 1:84� 107 600 600 600 1:84� 107 600 600 600

Bregman iterations – 3 – – – 3 – –
CPU time (s) 3:4� 104 0.990 1.235 12.176 3:4� 104 0.990 1.235 12.176

Index of sparsity – 0.158 0.272 0.090 – 0.158 0.272 0.090

* Best results among the compared algorithms: BGCD, OMP and LAR.
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sensitivity indices associated with E1 and A1 (respectively E2 and A2 to E6 and A6) are similar. Sensitivity indices associated
with F1 to F8 reflect the symmetry of the problem by giving similar significances to the symmetrical load pairs (e.g. F1 and F2,
F3 and F4, F5 and F6, F7 and F8), and gradually increase as the load pairs moves from the first to fourth layer of the truss struc-
ture. Greater sensitivity indices are logically attributed to the Young’s modulus and cross-sectional area of the vertical bar
than those of the horizontal and diagonal bars. The differences between Sobol’ and total sensitivity indices are trivial, which
indicates small interactive effects among the input variables. Taking the MC simulation results as analytical values, the sen-
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sitivity index error eS by using BGCD, OMP and LAR is obtained as 0.011, 0.017 and 0.076, respectively. Therefore, it is con-
cluded that the proposed BGCD yields the most accurate results while OMP outperforms LAR. The research findings of this
spatial truss structure with high-dimensional (twenty-one) input variables are in good accordance with the planar truss
structure in Example 4, which demonstrates further the great potential of the proposed algorithm in practical engineering.

6. Conclusions

In this paper, a novel algorithm based on the integration of GCD and Bregman iteration is proposed for building sparse
PCE of model response. It is then used to compute Sobol’ indices for GSA. Taking advantage of the efficiency of GCD in spar-
sity exploitation and capability of Bregman iteration in accuracy enhancement, the proposed BGCD efficiently and accurately
selects the significant basis polynomials by solving a LASSO-based regression problem (also known as general
l1-minimization problem) of the PC coefficients. The novelty and strength of the proposed algorithm are three-fold: (1)
building sparse PCE by reducing model complexity with the LASSO-based regression and taking advantage of the efficiency
and robustness of GCD in sparsity exploitation, (2) settling the inefficiency in selecting the regularization parameter in the
LASSO-based regression and enhancing the accuracy of GCD simultaneously by incorporating Bregman iteration to form a
hierarchical algorithm structure, and (3) handling problems with far more unknown coefficients than the number of model
evaluations.

The performance of the proposed algorithm is demonstrated by five numerical examples. Several sparse reconstruction
techniques including PCD, GCD, OMP, LAR and two adaptive algorithms are used to make comparisons with the proposed
BGCD. It is shown that the proposed algorithm yields more accurate sensitivity results than those obtained by OMP, LAR
and two adaptive algorithms, while the performances of the benchmark algorithms are not consistent. The superiority of
BGCD over OMP and LAR in computational efficiency becomes notable as the number of samples increases. In terms of
the level of sparsity, it is found that the proposed algorithm produces sparser PCE than that by OMP and LAR for problems
with low interaction order such as the Ishigami function and maximum deflection of a truss structure. For problems with
relatively high interaction order (e.g. the Morris function), although OMP and LAR yield sparser PCEs, the proposed algorithm
still outperforms in terms of accuracy, demonstrating a better technique to maintain a balance between model accuracy and
complexity.

The proposed algorithm aims at screening important basis polynomials and building an optimal sparse PCE with a fixed
degree of the PCE. Moreover, although the main focus of this paper is to develop a novel BGCD algorithm for sparse PCE
metamodeling with application to GSA, the constructed PCE model can be used for other applications such as estimation
of the response probability density function, reliability analysis and so on. Some preliminary results for estimation of the
response probability density function and reliability analysis have been obtained by the authors, which are not presented
herein since they are out of the scope of this paper. Further work on the adaptive strategies for choosing the PCE degree
and other usages of the developed sparse PCE is in progress.
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