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ABSTRACT: The construction of an S-scheme charge transfer pathway is
considered to be a powerful way to inhibit charge recombination and
maintain photogenerated carriers with high redox capacity to meet the
kinetic requirements of the carbon dioxide (CO2) photoreduction reaction.
For an S-scheme heterojunction, an internal electric field (IEF) is regarded
as the main driving force for accelerating the interfacial spatial transfer of
photogenerated charges. Herein, we designed a TiO2 hollow-sphere (TH)-
based S-scheme heterojunction for efficient CO2 photoreduction, in which
WO3 nanoparticles (WP) were applied as an oxidation semiconductor to
form an intimate interfacial contact with the TH. The S-scheme charge
transfer mode driven by a strong IEF for the TH/WP composite was
confirmed by in situ X-ray photoelectron spectroscopy and ultraviolet
photoelectron spectroscopy. As a result, abundant photogenerated electrons with strong reducing ability would take part in the CO2
reduction reaction. The combination of surface photovoltage spectra and transient photocurrent experiments disclosed that the IEF
intensity and charge separation efficiency of the fabricated TH/WP composite were nearly 16.80- and 1.42-fold higher, respectively,
than those of the pure TH. Furthermore, sufficient active sites provided by the hollow-sphere structure also enhanced the kinetics of
the catalytic reaction. Consequently, the optimized TH/WP composite showed a peak level of CO production of 14.20 μmol g−1 in
3 h without the addition of any sacrificial agent. This work provides insights into the kinetic studies of the S-scheme charge transfer
pathway for realizing high-performance CO2 photoreduction.

1. INTRODUCTION
The excessive consumption of traditional fossil fuels and the
growing emission of greenhouse gas (CO2) have led to
emerging global energy and environmental crises.1−3 Photo-
catalytic CO2 reduction based on solar energy offers a
sustainable strategy for converting CO2 to generate fuels and
chemicals to reduce the level of CO2 in the atmosphere.4

Nevertheless, efforts to decrease the level of CO2 are still
unsatisfying on a large scale due to the severe charge
recombination and sluggish kinetics of photocatalysts. To
promote the separation and transfer of photogenerated
electrons and holes, numerous strategies have been developed
for the design of efficient and cost-effective nanocatalysts,
including heteroatom doping,5 metal cocatalyst loading,6

defect or crystal engineering,7 nanostructure control,8 and
heterojunction construction.9 Specifically, the step (S)-scheme
heterojunction composed of reduction and oxidation photo-
catalysts has been proven to be a promising solution for the
kinetic control of photogenerated charges.10−12 In an S-scheme
photocatalyst, an internal electric field (IEF) would occur at
the interface were the two components with different Fermi
energy levels to contact with each other in an S-scheme

heterojunction. The IEF makes the main contribution to
directional charge transfer and rapid recombination of invalid
charges in the S-scheme transfer pathway,13 leading to the
improved spatial separation and transfer efficiency of photo-
generated charges with the highest redox capacity being
realized.14,15 Thus, an effective IEF is crucial for constructing
an S-scheme heterojunction that can satisfy the kinetic
requirements of photogenerated charge transfer and CO2
reduction.

Since the pioneering work of Fujishima and Honda,16 nano
titanium dioxide (TiO2)-based catalytic systems have been
studied extensively in solar energy conversion and environ-
mental remediation.17 As a representative photocatalyst, TiO2
with its advantages of a suitable conduction band (CB) level,18
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high chemical stability,19 low cost,20 and nontoxicity21 is
considered as an ideal candidate for CO2 photoreduction.22

However, the disordered free diffusion and slow transfer
efficiency of photogenerated charges in TiO2 would lead to
insufficient surface electrons and a low apparent quantum
efficiency for CO2 photoreduction. Morphological control of
TiO2 is shown to be an appropriate resolution for promoting
photocatalytic performance, including hierarchical,23 hollow-
sphere,24 yolk−shell,25 and other novel structures. In
particular, the hollow structure can enhance the light-
harvesting efficiency due to the multiscattering of incident
light.26 In addition, more exposed active sites in the hollow

structure would provide more efficient sites for CO2
adsorption and conversion. In 2021, Wang et al. developed a
TiO2 hollow-sphere integrated with an N-doped graphene
layer that demonstrated enhanced light absorption and a high
CO2 photoreduction performance of 18.11 μmol g−1 h−1.27

Meanwhile, the hollow-sphere structure can act as a superior
platform for the construction of a heterojunction composite.
To gain a deeper understanding of the IEF in S-scheme
heterojunctions, we must find a suitable oxidation photo-
catalyst to combine with the TiO2 hollow sphere to form a
reliable S-scheme. Specifically, tungsten oxide (WO3) is
selected as an ideal oxidation photocatalyst with a large work

Figure 1. (a) Schematic diagram for the synthesis of TH/WP composite. XRD patterns of (b) the TH and WP samples and (c) the TH, WP, and
TH/WP-x samples with different WP loading contents.

Figure 2. SEM images of the (a) TH, (b) WP, and (c) TH/WP composite. TEM and HRTEM images of the (d and e) pure TH and (f and g)
TH/WP heterojunction. (h) HAADF-STEM image and elemental mapping of the TH/WP heterojunction.
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function, superior photovoltaic properties, an easily scalable
synthesis, and strong oxidation capacity for the constructiono
of an efficient S-scheme photocatalyst with a TiO2 hollow
sphere.28

Herein, we construct an S-scheme heterojunction composed
of a TiO2 hollow sphere (TH) and WO3 nanoparticles (WP)
as a model in this work, in which the WP formed an intimate
plane contact with the TH, contributing to the establishment
of a giant IEF for directional carrier transfer and charge
separation. The S-scheme charge transfer mechanism of the
TH/WP composites can be confirmed by in situ-irradiated X-
ray photoelectron spectroscopy (XPS) and work function
tests,29 and the intensity of the IEF established in the S-scheme
can be tested by transient photocurrent response plots and
steady-state surface photovoltage (SS-SPV) spectra.30 The
experimental results demonstrated that the strong IEF
established in the S-scheme heterojunction improved the
photogenerated charge transfer kinetics and CO2 photo-
reduction performance. The as-prepared TH/WP composite
exhibited a significantly enhanced CO2 reduction performance,
the rate of production of CO reaching 4.73 μmol g−1 h−1

without any sacrificial agents.

2. RESULTS AND DISCUSSION
Figure 1a illustrates the synthesis of the TH/WP hetero-
junction photocatalysts. The TH is first constructed via a
modified silicon dioxide (SiO2) template method. Meanwhile,
the WP is synthesized by a facile hydrothermal method and
annealing treatment, forming a nanoparticle structure with a
radius of ∼20 nm. Finally, the TH/WP-x S-scheme
heterojunction composites are obtained by a liquid-phase
mixing process. The X-ray diffraction (XRD) patterns of the
WP, TH, and TH/WP-x samples were recorded to investigate
their crystal structure. It is notable in Figure 1b that the strong

peaks at 23.99°, 33.17°, 33.72°, and 49.75° that occurred in the
XRD pattern of WP can be assigned to the (200), (202), and
(400) planes of monoclinic WO3 (JCPDS Card 72-0677).31

Moreover, the peaks at 25.05°, 37.65°, 47.8°, 53.75°, 54.94°,
and 62.57° are assigned to the (101), (004), (200), (105),
(211), and (204) planes of TiO2, respectively (JCPDS Card
84-1286),29 indicating the anatase phase of the TH. The XRD
patterns of a series of TH/WP-x composites with different
amounts of the WP added are shown in Figure 1c.
Nevertheless, the characteristic diffraction peaks of WP can
barely be observed in XRD patterns of composites, due to the
relatively low loading content. Only when the WP:TH mass
ratio reached 7% did the main peaks corresponding to the
(200), (022), (202), and (400) planes appear. Compared with
those of the pristine WP and TH, the diffraction peak positions
of TH/WP-x composites are almost unchanged, indicating that
the crystal structures of WP and TH remain intact.

The morphology of the TH/WP photocatalysts was
investigated by scanning electron microscope (SEM) and
transmission electron microscope (TEM) images. As shown in
Figure 2a, the TiO2 etched with a HF solution exhibits a
uniform hollow sphere with a diameter of ∼400 nm.
Meanwhile, the size distribution of the prepared WP is even,
∼20 nm (Figure 2b). Obviously, Figure 2c shows for the TH/
WP composites that the WP are scattered on the outer surface
of the TH spherical shell with intimate contact, forming a dual-
shell hollow-sphere structure. The TEM image of the TH is
shown in Figure 2d, indicating a hollow structure of the
pristine TH with a uniform spherical shell (thickness of ∼100
nm). Accordingly, the high-resolution TEM (HRTEM) image
in Figure 2e of the TH indicates an interplanar distance of
0.352 nm (Figure S1), which belongs to the (101) crystal
plane of anatase TiO2, further verifying the anatase phase of
the TH.32 In addition, the TEM image of the TH/WP

Figure 3. (a) XPS full spectra and (b) Ti 2p, (c) O 1s, and (d) W 4f high-resolution spectra of different samples.
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composites (Figure 2f) shows that the hollow-sphere
morphology of the TH is well maintained, and the WP
uniformly attached on the outer wall of the TH. As illustrated
in the HRTEM image of the TH/WP composite (Figure 2g),
the interplanar distances are 0.352 and 0.268 nm (Figure S2),
corresponding to the anatase TiO2 (101) and WO3 (022)
crystal planes, respectively.31 The tight interfacial contact
between the TH and WP could also be observed in the red
square. Furthermore, the elemental distribution mapping of a
high-angle annular dark field scanning transmission electron
microscope (HAADF-STEM) image in Figure 2h shows that
there are three elements (Ti, W, and O) in the TH/WP
composite with a homogeneous distribution, which further
proves the successful synthesis of the TH/WP composite.

Meanwhile, the anatase TiO2 nanoparticles [TP (Figure
S3)] were prepared for comparison with the TiO2 hollow-
sphere structure. The N2 absorption−desorption isotherms of
TH and TH/WP-5 were recorded and are presented in Figure
S4a, which demonstrated a type IV isotherm with an H3-type
hysteresis loop illustrating their porous characteristics. More-
over, the Brunauer−Emmett−Teller (BET) specific surface
areas of TH and TH/WP-5 are 105.61 and 107.70 m2 g−1,
respectively, significantly larger than that of TP (17.62 m2 g−1).
The corresponding pore size distribution curves of prepared
samples based on the desorption curves are shown in Figure
S4b. The larger BET specific surface area of TH/WP-5 would
provide more active sites for CO2 adsorption and activation,
favoring the photocatalytic reaction.33

The surface elemental compositions and chemical states of
the TH, WP, and TH/WP composite were investigated by X-
ray photoelectron spectroscopy (XPS). The XPS full spectra
(Figure 3a) show that all O, Ti, and W elements are displayed

in the TH/WP sample, while no other elements can be found,
which is consistent with the mapping element distribution
results (Figure 2h). The actual elemental contents of O, Ti,
and W are listed in Table S1. The shift in the binding energy
peaks in high-resolution XPS spectra can directly reflect the
change in the electron density of elements.34 In Figure 3b, the
binding energy peaks in high-resolution Ti 2p XPS spectra of
the TH center at 458.7 and 464.4 eV could be attributed to the
2p3/2 and 2p1/2 orbitals of Ti4+, respectively.35 Moreover, the O
1s spectra (Figure 3c) of the TH show that the peaks centered
at binding energies of 529.4, 531.1, and 532.7 eV are attributed
to metal lattice oxygen, a surface hydroxyl group (-OH), and
adsorbed oxygen, respectively.36 For the W element (Figure
3d) of the WP, the peaks at binding energies of 35.4 and 37.5
eV are attributed to the 4f7/2 and 4f5/2 orbitals of W6+,
respectively, while the two lower-binding energy peaks at 35.7
and 38.3 eV belong to W5+.37 The existence of W5+ is probably
caused by the O vacancies in the WP.

Notably, the Ti 2p binding energies in the TH/WP
heterojunction increase with a large offset of 0.3 eV compared
with those of the TH, while its W 4f binding energy peaks shift
to a lower binding energy (∼0.2 eV) compared with those of
the WP. The results indicate that electrons in the TH/WP
could spontaneously transfer from TH to WP, when the TH
and WP contact with each other, leading to the band bending
and IEF formed on the interface between two components.
This phenomenon can provide strong evidence of the
formation of the TH/WP S-scheme heterojunction.

The photocatalytic CO2 reduction tests of different samples
were carried out under visible light irradiation in pure water
without the addition of any sacrificial agents or cocatalysts
(Figures S5 and S6). Obviously, the amount of CO product

Figure 4. (a) Time course of CO production and (b) CO production rate over the pristine WP, TH, and TH/WP-x heterojunction with different
WP contents. (c) CO production performance of the TH/WP-5 composite under continuous irradiation for 16 h. (d) XRD patterns before and
after CO2 photoreduction.
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from CO2 photoreduction gradually increases over time
(Figure 4a). Figure 4b demonstrates that the CO2 reduction
performance shows a volcano-shaped trend with an increase in
the level of WP incorporation. The best CO production rate is
achieved by TH/WP-5, reaching 4.73 μmol g−1 h−1. The CO2
photoreduction activity of TH/WP-7 can be mainly ascribed to
the active catalytic sites and light absorption of the TH shell
being hindered by the excess WP. Meanwhile, the TiO2
nanoparticle-based TP/WP-5 composite exhibits a rather low
CO production rate of 1.71 μmol g−1 h−1 (Figure S7a,b),
probably due to the agglomeration of TiO2 and WO3
nanoparticles with a flimsy interfacial contact and smaller
specific surface area.

The dosage (Figures S8 and S9) and pondus hydrogenii
(pH) (Figure S10) effects were further assessed to test the
adaptability of the TH/WP-5 sample for CO2 photoreduction.
As a result, a representative 20 mg of TH/WP-5 and neutral
conditions (pH ∼7) were chosen as the optimal catalyst

dosage and reaction condition to make the results more
compelling and allow widespread application. To further
demonstrate the superiority of the photocatalysts prepared in
this work, a comparison of the photocatalytic CO2 reduction
performance with those from other previously reported related
works is provided in Table S2.

To further investigate the stability of the prepared
photocatalyst, a long-term CO2 photoreduction experiment
was performed with the TH/WP composite. The results
(Figure 4c) show that the optimized TH/WP-5 sample can
continuously reduce CO2 to CO within 16 h, and the amount
of CO production increases linearly. In addition, the XRD
pattern (Figure 4d), XPS spectra (Figure S11), and TEM
image (Figure S12) of the TH/WP-5 composite collected after
the photocatalytic reaction are well matched with those of the
fresh sample, strongly confirming that the prepared TH/WP-5
sample is a promising CO2 reduction photocatalyst with long-
term photostabilization.38

Figure 5. In situ XPS spectra of (a) full spectra and high-resolution spectra of (b) Ti and (c) W of the TH/WP-5 composite with and without light
irradiation. UPS spectra of the (d) TH, (e) WP, and (f) TH/WP heterojunction. Possible photocatalytic mechanism of the S-scheme TH/WP
heterojunction (g) before contact, (h) after contact, and (i) under irradiation.
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To elaborate the S-scheme heterojunction mechanism, in
situ XPS technology was used to examine the TH/WP-5
composite. As shown in Figure 5a, all of the Ti, O, and W
elements could be seen in the full XPS spectra of the TH/WP-
5 composite before and after irradiation. In Figure 5b, the
binding energies of Ti 2p spectra in the TH/WP-5 composite
exhibit a negative shift (∼0.3 eV) under light irradiation, while
the W element in the TH/WP-5 composite (Figure 5c) shows
a positive binding energy shift of ∼0.3 eV compared to that in
the dark. These interesting results suggest that the TH with a
higher Fermi level can act as the electron donor in the TH/
WP-5 composite when two components contact each other,
leading to the transfer of electrons from TH to WP. When the
light turns on, the TH can serve as an electron acceptor and
the photogenerated electrons would migrate from WP to TH.
Finally, the invalid electrons from the CB of the WP can
transfer to the valence band (VB) of the TH to recombine with
reserved holes; thereby, the electrons with the greatest
reduction capacity can remain on the CB of TH, and the
holes with superior oxidation capacity would be left on VB of

the WP, fully satisfying the kinetic requirements of CO2
photoreduction. The charge transfer pathways of the interface
of the TH/WP-5 composite can be evidenced by the binding
energy shifts in the in situ XPS spectra, which strongly support
the S-scheme mechanism for the TH/WP-5 composite.39,40

The energy band structure of the prepared photocatalysts
should be seen as a basis for the carrier transfer pathway. The
ultraviolet−visible diffuse reflectance spectrum (DRS) was
recorded to determine the energy band structure and light
absorption capacities of as-synthesized samples (Figure
S13a).41 Apparently, the WP exhibits a broad and strong
light absorption in comparison to that of the pristine TH. The
energy gaps of the TH and WP are estimated to be 3.26 and
2.85 eV, respectively, via Tauc plots (Figure S13b). Moreover,
a slight enhancement of light absorption could be observed for
the TH/WP-x heterojunctions. The Mott−Schottky measure-
ments with three different frequencies of prepared samples are
further conducted, demonstrating that the flat band positions
(Efb) of the TH and WP are −0.90 and −0.08 V versus Ag/
AgCl, respectively (Figure S13c), because the bottom of the

Figure 6. Transient photocurrent density of the (a) TH and (b) TH/WP-5 samples with and without the addition of H2O2. (c) EIS Nyquist plots,
(d) surface charge densities, (e) SS-SPV spectra, and (f) IEF intensities of the TH and TH/WP-5 samples. (g) TS-SPV spectra, (h) charge
extraction efficiencies, and (i) maximum charge extraction times of the TH and TH/WP-5 samples.
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CB is generally 0.3 V more negative than the Efb in n-type
semiconductors. Finally, the CB positions can be estimated to
be −0.60 and 0.21 V versus NHE for the TH and WP,
respectively. As displayed in Figure S13d, such an energy band
structure strongly supports the formation of an S-scheme
heterojunction between the TH and WP.

To further clarify the S-scheme mechanism of the TH/WP
heterojunction, the work functions (WF) of the obtained
samples were measured by ultraviolet photoelectron spectros-
copy (UPS). The WF could help to determine the Fermi level
positions (EFermi) of the TH, WP, and TH/WP-5 samples. The
WF and secondary electron cutoff edge (Ecutoff) could be
obtained from the UPS spectra. Then, the corresponding WF
value could be calculated by eq 1:42

=W hv EF cutoff (1)

where hv (21.22 eV) represents the photoelectron energy of
the He I excitation light source used in the UPS measure-
ment.43,44 As shown in Figure 5d−f, the binding energies of the
Ecutoff of the WP, TH, and TH/WP-5 samples are shown to be
14.17, 16.88, and 16.35 eV, respectively. Ultimately, the WF
values of the WP, TH, and TH/WP-5 samples can be
estimated to be 7.05, 4.34, and 4.87 eV, respectively, indicating
the Fermi level of WP is lower than that of TH.

Combining the energy band structure with work functions
analysis, we can deduce the charge transfer pathway of the
TH/WP-5 heterojunction as an S-scheme heterojunction
mechanism. Before contact, the band structure and Fermi
levels of the TH and WP are presented in Figure 5g. Then, the
tight contact of two semiconductor components leads to the
interfacial electron transfer from TH to WP until the Ef tends
to equilibrium,45 resulting in intermediate EFermi and WF values
of the TH/WP-5 composite, and an IEF occurred at the
interface between the TH and WP (Figure 5h). Under light
irradiation, the strong interfacial IEF can impel the invalid
photogenerated electrons from the CB of the WP to
recombine with holes at the VB of the TH, leading to the
effective separation of photogenerated carriers (Figure 5i).
These results show that the construction of the TH/WP S-
scheme heterojunctions with strong IEF could inhibit the
recombination of photogenerated charges and maintain the
highest redox capacity to meet the kinetic requirements of CO2
photoreduction.

Furthermore, the separation and transfer kinetics of
photogenerated charges were studied to clarify the main
factors for improving photocatalytic CO2 reduction perform-
ance. The photoelectrochemical measurements were con-
ducted to elucidate the separation efficiency of photogenerated
charges in the TH/WP heterojunction. As revealed in panels a
and b of Figure 6, the transient photocurrent measurements
indicate that the TH/WP composite possesses a photocurrent
density that is much higher than that of the pristine TH,
implying faster separation of photogenerated carriers in the
TH/WP heterojunction. Simultaneously, the surface charge
transfer efficiency (ηtrans) is investigated by adding a fast
electron scavenger (H2O2) to the electrolyte solution.46 The
ηtrans can be calculated by the ratio of photocurrents (J)
detected in H2O and H2O2 electrolytes (the calculation details
are presented in the Supporting Information). As expected, the
positive photocurrent intensities of the TH and TH/WP-5
samples increase with the addition of H2O2. Accordingly, the
ηtrans values of the TH and TH/WP-5 samples are determined
to be 14.48% and 20.57%, respectively, demonstrating that the

TH/WP-5 composite exhibits a surface charge transfer
efficiency that is greater than that of the pristine TH. In
addition, the arc radius of the Nyquist curve from electro-
chemical impedance spectroscopy (EIS) for the TH/WP-5
composite is smaller than that of the pristine TH (Figure 6c).
The corresponding charge transfer resistance (Rct) of the TH/
WP-5 composite is estimated to be only 802.67 kΩ by fitting
EIS plots, much lower than that of the pure TH (1450.70 kΩ),
reflecting a smaller photogenerated charge migration resistance
and more rapid carrier transfer through the tight interfacial
contact in the TH/WP-5 S-scheme heterojunction.47,48 The
time-resolved fluorescence spectroscopy (TR-PL) spectra in
Figure S14 show that the average lifetime of the TH/WP-5
composite (0.536 ns) is much shorter than that of the pure TH
(1.676 ns), suggesting that the efficiency of separation of
photogenerated carriers is improved in the TH/WP-5
composite.49,50

Notably, the integral value is proportional to the number of
accumulated positive charges on the semiconductor surface
determined by subtracting the transient photocurrent density
from the steady-state photocurrent versus time (Figure 6d).
Meanwhile, the surface photovoltage values of the TH and
TH/WP-5 samples are 0.353 and 0.438 mV, respectively, as
revealed in the SS-SPV spectra (Figure 6e). Finally, the IEF
strength (Fs) can be determined by using eq 2:51

=F V( 2 / )s s 0
1/2 (2)

where Vs and ρ represent the surface voltage and surface
charge density, respectively, and ε and ε0 are the low-frequency
dielectric constant and the permittivity of free space,
respectively. With two constants of ε and ε0 in eq 2, the IEF
strength is generally influenced by the surface voltage and
charge density. Thereby, the IEF intensity of the TH/WP-5
composite is estimated to be 16.80 times that of the pure TH
(Figure 6f).

Furthermore, the transient-state surface photovoltage (TS-
SPV) technology was applied to penetrate the interfacial
charge transfer kinetics in the TH/WP-5 heterojunction. In a
rapid respond range (from 0.0001 to 0.45 s), the TH/WP-5
photocatalyst exhibits a photovoltage signal 5-fold higher than
that of the pure TH (Figure 6g), indicating that a stronger IEF
in the TH/WP-5 S-scheme heterojunction is beneficial for
promoting the separation and transfer of photogenerated
charges.52,53 In Figure 6h, the shaded integral area (P)
indicates the number of extracted electrons. Consequently, the
obtained P1 for the TH/WP-5 composite is 0.00044, which is
3.4 times higher than that of the pure TH (P2, 0.00013),
suggesting that more photogenerated charges can be
successfully transferred to the TH/WP-5 surface compared
to that in the pure TH. Moreover, the maximum charge
extraction time (τ) reflects the charge transfer rate, which plays
such a vital role in the photogenerated charge transfer process.
Figure 6i shows that the more rapid charge transfer efficiency
of the TH/WP-5 composite (τ● = 0.01352 ms) relative to that
of the pure TH (τ◆ = 0.01784 ms).54 These results are
consistent with the TR-PL analysis (Figure S14), which could
be regarded as strong evidence for the IEF in the TH/WP-5
heterojunction. Because of the strong IEF intensity and low
charge transfer resistance, the charge separation efficiency of
the TH/WP-5 heterojunction reaches 20.57%, which is ∼1.42
times that of the pure TH. These results lead us to conclude
that the greater number photogenerated charges in the TH/
WP-5 heterojunction could separate and transfer in a shorter
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time, leading to an efficient photocatalytic CO2 reduction
performance.

On the basis of the experimental results presented above, a
possible photocatalytic CO2 reduction pathway over the TH/
WP-5 heterojunction is proposed in Figure 7. To equilibrate

the Fermi energy levels of two semiconductor components, the
strong interaction between the TH/WP-5 heterostructures
would lead to charge transfer through the contact interface,
until a giant IEF formed.55 First, the rich active sites could be
provided by the dual-shell hollow-sphere structure of the TH/
WP-5 composite. Then, under light irradiation, the photo-
generated electrons from the CB of the WP could recombine
with holes in the VB of the TH under the effect of IEF, leaving
the charges with the highest redox potential in the CB of the
TH and the VB of the WP. Notably, a large number of
photogenerated electrons are verified to migrate to the
photocatalyst surface due to the strong IEF. Meanwhile, the
rich surface-active sites on the dual-shell hollow-sphere
structure are beneficial for CO2 adsorption and activation.
With photogenerated electrons, and H+ from water, the
activated CO2 would go through a continuous process: CO2 +
2H+ + 2e− → CO + H2O.56,57

3. CONCLUSIONS
In summary, a TiO2 hollow-sphere-based S-scheme hetero-
junction was designed and synthesized to study the kinetic
mechanism of photogenerated charge transfer and CO2
photoreduction. For the fabricated S-scheme heterojunction
photocatalyst, the IEF intensity and charge separation
efficiency of the optimized TH/WP composite were
determined to be 16.80 and 1.42 times higher, respectively,
than those of the pristine TH. Meaningfully, the TS-SPV
results revealed a great advantage of the TH/WP composite in
terms of its charge extraction rate (∼3.38 times higher than
that of the TH) and maximum extraction time (0.01352 ms)
compared to those of the pure TH. In brief, the synergetic
advantages of the strong charge driving force induced by the
giant IEF, S-scheme pathway, and abundant active sites could
accelerate charge separation and transfer and maintain high
redox ability for realizing an improved kinetic process in CO2
photoreduction and promote photocatalytic performance. This
work explored the interfacial charge transfer insights based on
S-scheme heterojunction photocatalysts through a series of
photoelectrochemical tests and provided a new vision for
further mechanistic investigation of the photocatalytic CO2
reduction reaction.
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Figure 7. Proposed mechanism for CO2 photoreduction over the
TH/WP-5 composite.
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