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Abstract
Metamodel-based high-dimensional model representation (HDMR) has recently been developed as a promising tool for approx-
imating high-dimensional and computationally expensive problems in engineering design and optimization. However, current
stand-alone Cut-HDMRs usually come across the problem of prediction uncertainty while combining an ensemble of
metamodels with Cut-HDMR results in an implicit and inefficient process in response approximation. To this end, a novel
stand-alone Cut-HDMR is proposed in this article by taking advantage of the explicit polynomial chaos expansion (PCE) and
hierarchical Cut-HDMR (named PCE-HDMR). An intelligent dividing rectangles (DIRECT) sampling method is adopted to
adaptively refine the model. The novelty of the PCE-HDMR is that the proposed multi-hierarchical algorithm structure by
integrating PCE with Cut-HDMR can efficiently and robustly provide simple and explicit approximations for a wide class of
high-dimensional problems. An analytical function is first used to illustrate the modeling principles and procedures of the
algorithm, and a comprehensive comparison between the proposed PCE-HDMR and other well-established Cut-HDMRs is then
made on fourteen representative mathematical functions and five engineering examples with a wide scope of dimensionalities.
The results show that the proposed PCE-HDMR has much superior accuracy and robustness in terms of both global and local
error metrics while requiring fewer number of samples, and its superiority becomes more significant for polynomial-like
functions, higher-dimensional problems, and relatively larger PCE degrees.

Keywords Metamodeling . Polynomial chaos expansion (PCE) . High-dimensional model representation (HDMR) . Adaptive
sampling . Design optimization

1 Introduction

Metamodels (also known as surrogate models) have been
widely used in the design and optimization of complex engi-
neering systems to replace computationally expensive simu-
lations for efficient estimation of system characteristics.
Typical metamodeling techniques include polynomial re-
sponse surface (PRS) (Hussain et al. 2002), radial basis

function (RBF) (Fang and Horstemeyer 2006), Kriging
(KRG) (Martin and Simpson 2005), support vector regression
(SVR) (Clarke et al. 2005), and ensemble of metamodels
(Goel et al. 2007; Zhang et al. 2021a). Information on the
comparative studies and applications of different metamodels
can be found in the relevant references (e.g., Jin et al. 2001;
Hussain et al. 2002; Li et al. 2010; Van Gelder et al. 2014;
Ostergard et al. 2018; Parnianifard et al. 2020). Although be-
ing successful in a variety of engineering applications, it has
been found that these metamodeling techniques are computa-
tionally prohibitive for solving high-dimensional problems
due to the “curse of dimensionality” (Shan and Wang
2010b). With the ever-increasing complexity of engineering
systems, it is very often to encounter simulation-based engi-
neering problems of high dimensionality (e.g., larger than 10).
Therefore, to effectively tackle these high-dimensional prob-
lems, an alternative metamodeling technique is demanded.

High-dimensional model representation (HDMR) has been
introduced as a general set of quantitative model assessment
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and analysis tools for high-dimensional input-output systems
(Sobol 1993; Rabitz et al. 1999; Rabitz and Alis 1999) and
applied in various fields, for instance, black-box
metamodeling (Li et al. 2001, 2006; Shan and Wang 2011),
sensitivity analysis (Wang et al. 2017), and reliability analysis
(Chowdhury and Rao 2009; Xie et al. 2017). There are mainly
two types of HDMR: analysis of variance (ANOVA)-HDMR
and Cut-HDMR (Rabitz and Alis 1999; Li et al. 2001).
Designed for statistical purposes with the capability to identify
significant variables and correlations, ANOVA-HDMR is
more beneficial for sensitivity analysis, but its main disadvan-
tage is the need to compute lots of integrals (usually byMonte
Carlo summations). On the contrary, Cut-HDMR, which in-
cludes no integral computations, can exactly represent the
target function by decomposing it into a set of component
functions on lines, planes, and hyperplanes passing through
a reference point (cut point). To this end, Cut-HDMR is more
attractive in terms of modeling due to the simplicity of imple-
mentation. Nevertheless, the original Cut-HDMR model only
offers a checkup table for the lack of a method to render a
complete model, and an accompanying sampling strategy is
also needed to support the model development.

Shan and Wang (2010a) combined RBF with Cut-HDMR
to build a high-dimensional modeling approach, termed RBF-
HDMR, and used an adaptive sampling method rooted in the
model format. The RBF-HDMR was recently improved by
Cai et al. (2016) and Liu et al. (2018). Wang et al. (2011)
combined moving least squares with Cut-HDMR integrated
with dividing rectangles (DIRECT) samplingmethod for solv-
ing high-dimensional problems. Tang et al. (2013) developed
KRG-HDMR with mode pursuing sampling method and ap-
plied it to the design optimization of steel springback. The
KRG-HDMR was recently enhanced and used in various op-
timization problems (Chen et al. 2016; Li and Wang 2016; Li
et al. 2017). Huang et al. (2015) combined SVR model with
Cut-HDMR to form SVR-HDMR, in which the DIRECT
sampling method was also adopted, and applied it to the
structure design of a heavy machine tool. Zhang et al.
(2019) combined an ensemble of metamodels with Cut-
HDMR for approximating high-dimensional problems.
Other types of HDMR introduced by researchers include ran-
dom sampling-HDMR (Li et al. 2006; Mukhopadhyay et al.
2015), hybrid HDMR (Tunga and Demiralp 2006;
Chowdhury and Rao 2009), indexing-HDMR (Tunga 2011),
Chebyshev-HDMR (Thomas et al. 2012), and principal com-
ponent analysis (PCA)-HDMR (Hajikolaei and Wang 2014).
A comparative study of different HDMRs for high-
dimensional problems can be found in the relevant references,
e.g., Chen et al. (2019).

The above metamodel-based HDMR approaches are prom-
ising for high-dimensional modeling. However, on one hand,
stand-alone Cut-HDMR methods (e.g., RBF-HDMR, KRG-
HDMR, SVR-HDMR) may come across problems with

prediction uncertainty, meaning that one Cut-HDMR
metamodel may be suitable for a problem but unsuitable for
another. On the other hand, although combining an ensemble
of metamodels with Cut-HDMR (e.g., Zhang et al. 2019) can
overcome the difficulty of prediction uncertainty for different
problems, it cannot provide simple and explicit expression for
a black-box problem, and predicting the responses of unob-
served points will become very slow and complex due to the
involvement of numerous parameters of different metamodels
(e.g., the polynomial coefficients in the PRS, interpolation
coefficients in the RBF, and parameters used for the correla-
tion function in the KRG, which are all needed to be deter-
mined if PRS, RBF, and KRG are formed into an ensemble of
metamodels) in representing Cut-HDMR. To this end, there is
a gap/need to develop an efficient and robust HDMR
metamodeling approach which can provide simple and explic-
it expression for a wide class of high-dimensional problems.

Motivated by the preceding analysis, this article proposes a
novel metamodeling approach based on the integration of
polynomial chaos expansion (PCE) and Cut-HDMR (PCE-
HDMR) in order to obtain a simple, accurate, and robust ap-
proximation for high-dimensional problems. The PCE ap-
proach is to represent explicitly the model response as a series
of orthonormal multivariate polynomials, i.e., polynomial
chaos (PC) basis (Ghanem and Spanos 1991; Xiu and
Karniadakis 2002), and has received much attention for un-
certainty and sensitivity analyses (Sudret 2008; Lee and Chen
2009; Cheng et al. 2020; Zhang et al. 2021b). Therefore, re-
sponse quantification in the context of PCE is equivalent to
estimation of the PC coefficients that are the coordinates of
model response in the basis and can be evaluated at a set of
sampling points in the input space. It is worth noting that,
although orthonormal basis functions are used in both the
proposed PCE-HDMR and exis t ing PCA-HDMR
(Hajikolaei and Wang 2014), these two methods are funda-
mentally different: (1) PCA-HDMR belongs to ANOVA-
HDMR, whereas PCE-HDMR is a Cut-HDMR; (2) PCA-
HDMR identifies the appropriate combinations of orthonor-
mal basis functions for model approximation along the direc-
tion of the last HDMR principal component with minimum
variation (or with weighted combinations of different compo-
nent PCA-HDMR models). Nevertheless, the proposed PCE-
HDMR decomposes the model response into a series of com-
ponent functions on lines, planes, and hyperplanes passing
through a cut point and further expands the respective com-
ponents in terms of multivariate orthonormal polynomials.
Due to the algorithm structure of multiple hierarchies that
are successively produced by the Cut-HDMR and PCE, the
proposed PCE-HDMR represents the correlation among in-
puts with an explicit model of finite terms (up to second-
order) and quantifies the output response by evaluating the
PC coefficients in regard to the selected orthonormal polyno-
mials. By this way, the proposed approach overcomes the
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aforementioned gap with combination of the DIRECT sam-
pling method. Therefore, compared to the existing studies, the
main contribution of this paper is that by integrating PCEwith
Cut-HDMR to form a multi-hierarchical algorithm structure,
the proposed PCE-HDMR can efficiently and robustly pro-
vide simple and explicit approximations for a wide class of
high-dimensional problems.

The remainder of this article is organized as follows.
Section 2 presents the theoretical bases of HDMR and PCE.
An adaptive PCE-HMDR metamodeling approach is pro-
posed in Section 3. Section 4 evaluates the performance of
PCE-HDMR with extensive numerical experiments.
Concluding remarks are summarized in Section 5.

2 Theoretical bases

2.1 HDMR

A general HDMR model for the output response f(x)
can be expressed in a hierarchical correlated function
expansion in terms of an n-dimensional input vector
x = [x1, x2, ⋯, xn]

T ∈ ℝn as

f xð Þ ¼ f 0 þ ∑
1≤ i≤n

f i xið Þ þ ∑
1≤ i< j≤ n

f ij xi; x j
� �

þ ∑
1≤ i< j< k ≤n

f ijk xi; x j; xk
� �þ…

þ ∑
1≤ i1<…< il ≤n

f i1i2⋯il xi1 ; xi2 ;⋯; xilð Þ þ…

þ f 12⋯n x1; x2;⋯; xnð Þ ð1Þ

where f0 is a constant term denoting the zeroth-order effect on
f(x), fi(xi) is a first-order term expressing the effect of variable xi
acting independently upon f(x), fij(xi, xj) is a second-order term
that describes the correlated effect of variables xi and xj on f(x)
after removing their individual contributions, the higher-order
terms give the effects of increasing numbers of correlated vari-
ables acting together on f(x), and the last term f12⋯n(x1, x2,⋯, xn)
represents the residual effect of all input variables acting together
on f(x) after all the lower-order correlations and individual influ-
ences have been removed. Formost physical systems, the higher-
order terms in Eq. (1) are negligible, and only lower-order cor-
relations among input variables are expected to have a significant
influence on the output response (Rabitz and Alis 1999). In this
regard, the second-order HDMR expansion is widely used, and
this would dramatically reduce the required computational cost
while providing an acceptable modeling accuracy when one
seeks to map input-output relationships of complex physical
systems.

Among the developed HDMRs (Li et al. 2001; Li et al.
2006; Tunga and Demiralp 2006), the Cut-HDMR (Rabitz

and Alis 1999) presents a simple and cost-efficient model
structure and provides a comparable accuracy to other
HDMRs. Therefore, the Cut-HDMR is chosen as the basis
for the proposed PCE-HDMR. The Cut-HDMR expansion is
an exact representation of the output f(x) by a superposition of
its values on the cuts (cut lines, planes, and hyperplanes) pass-

ing through a cut point x0 ¼ x10 ; x20 ;⋯; xn0½ �T in the input
variable space. As a result, the component functions of Cut-
HDMR in Eq. (1) can be expressed as

f 0¼ f x0ð Þ ð2Þ
f i xið Þ ¼ f xi; xi0

� �
− f 0 ð3Þ

f ij xi; x j
� � ¼ f xi; x j; x

ij
0

� �
− f i xið Þ− f j x j

� �
− f 0 ð4Þ

f ijk xi; x j; xk
� �

¼ f xi; x j; xk ; x
ijk
0

� �
− f ij xi; x j

� �
− f ik xi; xkð Þ− f jk x j; xk

� �
− f i xið Þ− f j x j

� �
− f k xkð Þ− f 0

⋯

ð5Þ

f 12⋯n x1; x2;⋯; xnð Þ
¼ f xð Þ− f 0−∑

i
f i xið Þ−∑

ij
f ij xi; x j
� �

−⋯ ð6Þ

where xi0; x
ij
0 ; and x

ijk
0 are x0 without elements xi, (xi, xj), and

(xi, xj, xk), respectively. The points x0,
xi; xi0
� � ¼ x10 ; x20 ;⋯; xi;⋯; xn0½ �T ; and xi; x j; x

ij
0

� � ¼ x10 ; x20 ;⋯; xi;⋯; x j;⋯; xn0
� �T

are referred as the zeroth-order, first-order, and second-
order points, respectively. Accordingly, f(x0), f xi; xi0

� �
,

and f xi; x j; x
ij
0

� �
are respectively the values of f(x) at

points x0, xi; xi0
� �

, and xi; x j; x
ij
0

� �
, while fi(xi) is the

first-order component output response at xi along the i-
th cut line and fij(xi, xj) is the second-order component
output response at (xi, xj) on the i-j cut plane.

Although Cut-HDMR has shown good properties, the
model given in Eqs. (2)–(6) only offers a checkup table and
cannot be used for data interpolation at its current stage. To
have a complete and available model, this study proposes to
adopt PCE as the basis to build the component functions of
Cut-HDMR.

2.2 PCE

The classic PCE of the model response y = f(x) can be repre-
sented as follows:

y ¼ f xð Þ ¼ ∑
α∈ℕn

βαψα xð Þ ð7Þ

where α = (α1,⋯,αn) (with αi ≥ 0) is an n-dimensional in-
dex, {βα :α ∈ℕn} are unknown deterministic PC coeffi-
cients, and {ψα : α ∈ ℕn} are multivariate orthonormal

ð5Þ
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polynomials. Assuming that the input vector x has indepen-
dent components xi with prescribed probability density func-
tion (PDF) f X i

xið Þ, the input joint PDF can be obtained by

f X xð Þ¼ ∏
n

i¼1
f X i

xið Þ ð8Þ

For each input xi (i = 1, ⋯, n), a family of univariate orthog-

onal polynomials π 1ð Þ
αi

xið Þ;π 2ð Þ
αi

xið Þ;⋯
� �

can be constructed

with respect to f X i
xið Þ satisfying

E π jð Þ
αi

xið Þπ kð Þ
αi

xið Þ
h i

¼∫X iπ
jð Þ

αi
xið Þπ kð Þ

αi
xið Þ f X i

xið Þdxi¼c j;kð Þ
αi

δ j;kð Þ ð9Þ

where δ(j, k) is the Kronecker symbol with δ(j, k) = 1 if j = k,
otherwise δ(j, k) = 0, and c j;kð Þ

αi
is a constant. Different types of

univariate orthogonal polynomials commonly used for con-
structing PC can be found in the literature, e.g., Xiu and
Karniadakis (2002). The univariate polynomials are usually
normalized as

ψ jð Þ
αi
¼π jð Þ

αi
xið Þ=

ffiffiffiffiffiffiffiffiffi
c j;kð Þ
αi

q
ð10Þ

By tensorizing the resulting n families of univariate polyno-
mials, one can obtain the multivariate polynomial:

ψα xð Þ¼ ∏
n

i¼1
ψ ið Þ
αi

xið Þ ð11Þ

In practice, the PCE in Eq. (7) is usually truncated for
computational purposes. A common way is to retain those

polynomials whose total degree αj j¼ ∑
n

i¼1
αi does not exceed

a given degree of p:

ð12Þ

The expression of Eq. (12) is called the full PCE of degree p of
the model response y. The total number of unknown PC coef-
ficients P can be calculated from the maximum degree p and
the dimensionality n of inputs as follows:

P ¼ nþ p
p

	 

¼ nþ pð Þ!

n!p!
ð13Þ

With such a truncation, the problem of characterizing the
model response y is converted into computing a finite set of
unknown PC coefficients.

In order to compute the PC coefficients, nonintrusive
regression-based techniques (Sudret 2008; Szepietowska
et al. 2018; Zhang et al. 2021b) are often used to seek a PCE
that satisfies:

ð14Þ

where N is the number of input-output samples. Equation (14)
can be rewritten in the form of y =ψβ, where β ∈ℝP is a
vector of unknown PC coefficients, y ∈ℝN is a vector of N
realizations of the model output, and ψ ∈ℝN × P is the mea-
surement matrix of which each column contains evaluations
of the PC basis polynomials at the N samples. The PC coeffi-
cients are evaluated by minimizing the residual between the
model response and PCE approximation. For N ≥ P, the un-
known coefficients can be computed using the least-squares
regression: β = (ψTψ)−1ψTy. When N < P, the system equa-
tion forβ becomes ill-posed, and the least-squares approach is
no longer feasible. To this end, some form of constraint or
regularization is usually introduced to identify a unique
solution.

From the theory of compressed sensing (Donoho 2006;
Tropp and Gilbert 2007; Eldar and Kutyniok 2012), it is indi-
cated that the model responses can be accurately reconstructed
for problems where the quantity of interest demonstrates sto-
chastic sparsity. In the context of the PCE, this sparsity allows
the unknown coefficients in Eq. (14) to be determined with
only a few terms of significant nonzeros when the number of
samples is less than the dimensionality of the PC coefficients,
i.e., N ≪ P. For a PCE with sufficient sparsity, the significant
nonzero coefficients can be obtained by solving the following
ℓ1-minimization problem

ð15Þ

with an ℓ2 norm constraint to account for the error ϵ in the p-th
degree truncation of the PCE. Equation (15) can be solved by
two main categories of approaches: basis pursuit (Chen et al.
1998) and greedy algorithms (Tropp and Gilbert 2007;
Baptista et al. 2019). In the present paper, a greedy algorithm,
orthogonal matching pursuit (OMP), is adopted to obtain a
sparse PCE as the basis for constructing the component func-
tions of Cut-HDMR. To this end, it is now possible to intro-
duce a simple, accurate, and robust algorithm for modeling
high-dimensional problems.

3 An adaptive PCE-HDMR metamodeling
approach

In this section, an adaptive PCE-HDMR is proposed in order
to improve the accuracy and robustness of the HDMR. Firstly,
the principle for model construction is described. Then, an
intelligent sampling method called DIRECT sampling is in-
troduced. The procedure for building an adaptive PCE-
HDMR is subsequently elaborated, and an example to illus-
trate the detailed steps of the proposed algorithm is finally
presented.
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3.1 Principle of PCE-HDMR

In the process of metamodeling, since the characteristics of
underlying functions or problems are usually not known a
priori, it is very challenging to select the most appropriate
metamodel for a specific application. Due to this issue, most
existing Cut-HDMR metamodels such as RBF-HDMR,
KRG-HDMR, and SVR-HDMR usually encounter the situa-
tion of prediction uncertainty for different problems. On the
other hand, although the ensemble of metamodels can provide
robust prediction for a variety of problems, its integration with
Cut-HDMR usually involves lots of different metamodel pa-
rameters that are usually determined by using optimization
algorithms and thus leads to a complex and inefficient process
with an implicit expression in predicting the responses. The
proposed PCE-HDMR model makes use of the hierarchical
structure of HDMR and employs the PCE metamodel in an
explicit expansion of multivariate orthonormal polynomials to
construct the component functions of Cut-HDMR. Therefore,
Eqs. (2)–(6) can be rewritten as follows:

f 0¼ f x0ð Þ ð16Þ
ð17Þ
ð18Þ

ð19Þ
⋯

ð20Þ

where the one-dimensional (1D) PCE model bf i xið Þ is the ap-
proximation of the first-order component response fi(xi), the
two-dimensional (2D) PCE model bf ij xi; x j� �

is the approxi-
mation of the second-order component response fij(xi, xj), and
so on. Referred as the modeling lines, planes, and hyper-
planes, Eqs. (16)–(20) are substituted into the HDMR in Eq.
(1), and we have the following formulation:

ð21Þ

The expression of Eq. (21) is called the full PCE-HDMR,
which approximates the output in a multi-hierarchical way:
the first hierarchy is that the output is represented by

superposing its values on the cut lines, planes, and hyper-
planes with reference to a cut point, and the second hierarchy
is that the component outputs of different orders resulting
from the first hierarchy are further expanded in terms of mul-
tivariate orthonormal polynomials. To this end, PCE-HDMR
distinctly represents the correlation among input variables
with an explicit model of finite terms and quantifies the output
response by estimating the PC coefficients with respect to the
selected orthonormal polynomials.

As described in Section 2, a second-order HDMR expan-
sion is usually sufficient to represent the original model.
Therefore, the PCE-HDMR can be truncated as:

ð22Þ
The number of unknown PC coefficients in the second-order
PCE-HDMR is given by

PPCE−HDMR ¼ n*P ið Þ þ n n−1ð Þ
2

*P ijð Þ ð23Þ

where P ið Þ ¼ p1þ1ð Þ!
p1!1!

and P ijð Þ ¼ p2þ2ð Þ!
p2!2!

are the numbers of PC

coefficients in the 1D PCE model bf i xið Þ with the PCE degree

of p1 and 2D PCEmodel bf ij xi; x j� �
with the PCE degree of p2,

respectively. Comparing Eq. (23) with Eq. (13), it is observed
that PCE-HDMR dramatically reduces the number of model
evaluations (i.e., the computational cost) required for comput-
ing the PC coefficients by transforming an exponentially in-
creasing computational difficulty into a polynomial one. To
further reduce the modeling cost, an intelligent sampling
method is adopted in the sequel.

3.2 DIRECT sampling method

As a pattern search method that keeps a tradeoff between
global and local search, the DIRECT algorithm was devel-
oped to handle global optimization problems with bound con-
straints (Jones et al. 1993). It is capable of identifying the area
near a global minimum within few function evaluations. On
the other hand, the advantage of the HDMR is to utilize a
limited number of sample points to construct the metamodel
for approximating the assigned problem. If the area near a
global minimum is located, the metamodel can be built within
this area. Therefore, the original design space is actually
reduced.

It is also noticed that the DIRECT algorithm is a determin-
istic sampling method, which is mainly to find all the local
extreme points in order to locate the global minimum points in
different parameters within the search ranges. This method has
a very fast convergence rate and is robust to local optimum.
Therefore, the DIRECT sampling method is more appropriate
for the HDMR and used in this study to construct the PCE-
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HDMR model. In general, the DIRECT algorithm transforms
the design space into the unit hypercube, i.e.

Ω ¼ x ∈ℝn : 0≤xi≤1f g ð24Þ
The algorithm executes in this normalized space and refers to
the original space only when the corresponding function is
evaluated. The center of this space is c1, and we begin by
finding f(c1). Then, divide the hypercube by evaluating func-
tion values at sample points ci ± ζei, i = 1, 2,⋯, n, where ζ is
one-third the side length of the hypercube, and ei is the i-th
unit vector. The DIRECT algorithm chooses to leave the best
function values in the largest space. Therefore, define:

ωi ¼ min f c1 þ ζeið Þ; f c1−ζeið Þð Þ; 1≤ i≤n ð25Þ

and divide the dimension with the smallest ωi into thirds so
that ci ± ζei are the centers of the new hyper-rectangles. This
process is repeated until each point on the stencil is the center
of a new hyper-rectangle. The most important strategy for
DIRECT is how to determine potentially optimal hyper-
rectangles that should be divided in the iteration.

In order to ensure that the hyper-rectangles will shrink on
every dimension, the divisions are restricted to being done
only along the longest dimension(s) of the rectangle. If the
hyper-rectangle is a hypercube, the divisions will be carried
out along all sides. Figure 1 depicts a two-dimensional illus-
trative example of the DIRECT algorithm with three itera-
tions. The shaded rectangles/hypercubes are identified by
DIRECT to be potentially optimal hyper-rectangles and divid-
ed in the subsequent domains without shades.

In addition, it should be noted that the DIRECT algorithm
is used in this article as a sampling method for global
metamodeling rather than global optimization. Therefore, the

criterion of determining potential rectangles of DIRECT in
combination with PCE is formulated as follows: first, the
PCE model is constructed with initial sample points located
at the lower and upper limits of the range of each variable;
then, the model is used to evaluate the response of sample
point generated within the potential rectangle based on the
maximum response difference or maximum side length using
DIRECT; finally, by setting the potential rectangle of
DIRECT in a current sample point with the largest prediction
error, more points are sampled around the highly nonlinear
region. Compared to the original DIRECT sampling method
(Huang et al. 2015), in which the initial sample points are also
selected by using DIRECT, the novelty of the current study is
that the initial sample points used for constructing the PCE
model are located at the edge of problem domain. By this way,
the limitation of original DIRECT sampling method in which
the sample points cannot be extrapolated to the domain edge is
overcome. Detailed procedures of the adaptive PCE-HDMR
are given as follows.

3.3 Adaptive PCE-HDMR

The proposed adaptive PCE-HDMRmetamodeling technique
attempts to use PCE to construct Cut-HDMR model based on
the DIRECT sampling method. The flowchart of the proposed
algorithm is shown in Fig. 2. The details of the adaptive PCE-
HDMR are presented as follows:

1. Select the center point of the design space as the cut point
x0, and evaluate the response f0 = f(x0).

2. Choose two sample points xupperi and xloweri along xi axis
and respectively at the upper and lower limits of the range
of variable xi; evaluate their responses, f i x

upper
ið Þ ¼ f

Fig. 1 A two-dimensional
illustrative example of DIRECT
sampling method
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xupperi ; xi0
� �

− f 0 and f i x
lower
i

� � ¼ f xloweri ; xi0
� �

− f 0; and

construct the 1D PCE model bf i xið Þ.
3. Check the linearity of the first-order component functionbf i xið Þ constructed in Step 2. Randomly generate a sample

point xrandi along xi axis, and evaluate the response value

f i x
rand
i

� � ¼ f xrandi ; xi0
� �

− f 0. I f
bf i xrandið Þ− f i xrandið Þ

f i xrandið Þ
����

����≤ε1
and

f i xupperið Þ−bf i xi0ð Þ
xupperi −xi0

−
bf i xi0ð Þ− f i xlowerið Þ

xi0−x
lower
i

����
����≤ε1, where ε1 is a

threshold, bf i xið Þ is considered as linear, and the construc-
tion of the i-th function is completed. Otherwise, add
xi0 ; f i xi0ð Þð Þ to the existing input-output samples

xupperi ; f i x
upper
ið Þð Þ; xloweri ; f i x

lower
i

� �� �� 
, and reconstruct

the PCE model bf i xið Þ:
4. Resample along xi axis using the DIRECT sampling

method, and check the convergence of the component

function bf i xið Þ. First, select the optimal side (i.e., the op-
timal hyper-rectangle in 1D) with the maximum response
difference between its end points , i .e . , max(

f i xi0ð Þ− f i xloweri

� ��� ��, f i x
upper
ið Þ− f i xi0ð Þj j ), and sample a

new point xnewi at one-third of the side from its end point
of larger response (absolute) value. If the convergence

criterion
bf i xnewið Þ− f i xnewið Þ

f i xnewið Þ
����

����≤ε1 is not satisfied, add

xnewi ; f i x
new
i

� �� �
to the existing samples, update the PCE

model bf i xið Þ, and resume Step 4. Otherwise, continue to
select the optimal side with the maximum length, i.e.,
max( xi0−xloweri

�� ��, xupperi −xi0j j ): (1) if the optimal side

based on the maximum length is the same as that based
on the maximum response difference, add
xnewi ; f i x

new
i

� �� �
to the existing samples, update the PCE

model bf i xið Þ, and resume Step 4; (2) otherwise, sample
another new point in a similar way as above for the opti-
mal side based on the maximum length. If the conver-
gence criterion is fulfilled, terminate the i-th function con-
struction. If not, add this new point to the existing sam-

ples, update the PCE model bf i xið Þ, and resume Step 4.
5. Repeat from Step 2 to Step 4 until all the first-order com-

ponent functions are constructed. To this end, the first-
order PCE-HDMR model is completed.

6. Form a new point xi; x j; x
ij
0

� �
by randomly combining

point values sampled in Step 2 to Step 5, and evaluate

its response f xi; x j; x
ij
0

� �
. If

f xi;x j;x
ij
0ð Þ−bf i xið Þ−bf j x jð Þ− f 0
f xi;x j;x

ij
0ð Þ

����
����≤ε1, where bf i xið Þ and bf j x j

� �
are calculated based on the first-order PCE-HDMR
models obtained in Step 4 to Step 5, it is considered that
there is no higher-order HDMR component function and
the construction process in this term terminates.
Otherwise, go to the next step.

7. Choose four sample points by combining point values
respectively at the lower and upper limits of the range of

variables xi and xj, i.e., xloweri ; xlowerj ; xij0
� �

,

xloweri ; xupperj ; xij0
� �

, xupperi ; xlowerj ; xij0
� �

, and

xupperi ; xupperj ; xij0
� �

; evaluate their responses; and con-

struct the 2D PCEmodel bf ij xi; x j� �
. Generate a new point

xnewi ; xnewj ; xij0
� �

similarly as in Step 6, and check the con-

vergence criterion
bf ij xnewi ;xnewjð Þ− f ij xnewi ;xnewjð Þ

f ij xnewi ;xnewjð Þ
����

����≤ε1. If the

Y

Y
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Start
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responses and construct the 1D PCE model 

Resample and construct nonlinear component function 

Y

N

N
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Construct other first-order component functions

All the first-order component 
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N
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Fig. 2 The flowchart of the adaptive PCE-HDMR
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convergence criterion is satisfied, the construction of bf ij
xi; x j
� �

is completed. Otherwise, add this new point to the
existing sample points, reconstruct the PCE modelbf ij xi; x j� �

, generate another new point as in Step 6, and

check the above convergence criterion. Repeat this pro-

cess until bf ij xi; x j� �
converges.

8. In a similar manner, construct the 2D PCE model for all
pairs of input variables. Finally, the complete PCE-
HDMR model is obtained

bf xð Þ ¼ f 0 þ ∑
1≤ i≤n

bf i xið Þ þ ∑
1≤ i< j≤n

bf ij xi; x j� � ð26Þ

3.4 An example for adaptive PCE-HDMR

For better illustrating the PCE-HDMRmodeling process, con-
sider the following analytical function of three variables:

f xð Þ¼ x1−1ð Þ2þ x1−x2ð Þ2þx2x3þ0:5; x ∈ 0; 1½ �3 ð27Þ
This function has linear and quadratic responses along vari-
ables x1 and x2, linear responses along variable x3, and two
pairs of correlated variables, i.e., x1 and x2 and x2 and x3. It is
assumed that the analytical function is a black-box problem
with unknown expression, and a corresponding output can be
determined by experiment for a given set of input variables.
Therefore, an approximate model for Eq. (27) can be con-
structed step by step using the proposed PCE-HDMRmethod:

1. Select the center point x0 = [0.5, 0.5, 0.5]T of the design
space as the cut point, and obtain the corresponding re-
sponse by experiment:

f 0¼ f x0ð Þ¼1 ð28Þ

2. Sample two points along x1 axis and respectively at its

upper and lower limits, i.e., xupper1 ; x10
� � ¼ 1; 0:5; 0:5½ �T

and xlower1 ; x10
� � ¼ 0; 0:5; 0:5½ �T ; get the corresponding re-

sponses by experiment: f xupper1 ; x10
� � ¼ 1 and

f xlower1 ; x10
� � ¼ 2; and obtain f 1 xupper1

� � ¼ f xupper1 ; x10
� �

−
f 0 ¼ 0 and f 1 xlower1

� � ¼ f xlower1 ; x10
� �

− f 0 ¼ 1: Then, the

first-order component function bf 1 x1ð Þ can be constructed
by PCE-HDMR with {(1, 0), (0, 1)}:bf 1 x1ð Þ ¼ β0L0 x1ð Þ þ β1L1 x1ð Þ, where the PC coeffi-
cients β0 and β1 are obtained by the OMP algorithm with
β0 ¼ 1

2 and β1 ¼ − 1
2. The Legendre polynomials Ln(x) are

orthogonal with respect to the uniform probability mea-
sure over [−1, 1] and may be generated by the recurrence
relationship (Sudret 2008):

L0 xð Þ¼1
nþ1ð ÞLnþ1 xð Þ¼ 2nþ1ð ÞxLn xð Þ−nLn−1 xð Þ ð29Þ

For example, the first three Legendre polynomials are
L 1 (x ) = x , L2 xð Þ ¼ 1

2 3x2−1ð Þ; and L3 xð Þ ¼ 1
2 5x3−3xð Þ:

Therefore, bf 1 x1ð Þ ¼ 1
2 1−x1ð Þ; x1∈ −1; 1½ �: Transforming the

design space of variable x1 from [−1, 1] to [0, 1], we will

have bf 1 x1ð Þ ¼ 1−x1:

3. Randomly generate a sample point xrand1 ; x10
� �¼

0:4284; 0:5; 0:5½ �T along x1 axis, get the corresponding
response by experiment: f xrand1 ; x10

� �¼1:0819, and ob-

tain f 1 xrand1

� �¼ f xrand1 ; x10
� �

− f 0¼0:0819: Check the lin-

earity of the first-order component function bf 1 x1ð Þ with
ε1 = 0.001:

bf 1 xrand1ð Þ− f 1 xrand1ð Þ
f 1 xrand1ð Þ

����
����¼5:9792>ε1, and

f 1 xupper1ð Þ−bf 1 x10ð Þ
1−0:5 −

bf 1 x10ð Þ− f 1 xlower1ð Þ
0:5−0

����
����¼0 < ε1: Therefore,

bf 1 x1ð Þ is nonlinear. Add (0.5, 0) to the existing input-
output samples {(1, 0), (0, 1)}, and obtain the reconstruct-

ed PCE model bf 1 x1ð Þ¼2x21−3x1þ1.
4. Select the optimal side [0, 0.5] based on the maximum

response difference, and generate a new sample 1
6 ;

5
9

� �
according to the DIRECT sampling method. The conver-

gence criterion is satisfied:
bf 1 1

6ð Þ− f 1 1
6ð Þ

f 1
1
6ð Þ

����
����¼0≤ε1. Since the

side [0, 0.5] is also optimal based on the maximum length,
add 1

6 ;
5
9

� �
to the existing samples, and get the updated

PCE model bf 1 x1ð Þ¼2x21−3x1þ1. Then, select the next

optimal side [16 ,
1
2] based on the maximum response dif-

ference, similarly generate another new sample 5
18 ;

26
81

� �
,

and find that
bf 1 5

18ð Þ− f 1 5
18ð Þ

f 1
5
18ð Þ

����
����¼0≤ε1. Continue to select the

optimal side [12, 1] based on the maximum length, and

obtain the next new sample 2
3 ;−

1
9

� �
. Sincebf 1 2

3ð Þ− f 1 2
3ð Þ

f 1
2
3ð Þ

����
����¼0≤ε1, the construction of bf 1 x1ð Þ is com-

pleted. We can get:

bf 1 x1ð Þ¼2x21−3x1þ1≡ f 1 x1ð Þ ð30Þ

5. Repeat the above Step 2 to Step 4 along x2 and x3 axes,
respectively, and we can get:

bf 2 x2ð Þ¼x22−
x2
2
≡ f 2 x2ð Þ ð31Þ
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bf 3 x3ð Þ¼x3
2
−
1

4
≡ f 3 x3ð Þ ð32Þ

6. Form a new point xupper1 ; xupper2 ; x120
� � ¼ 1; 1; 0:5½ �T , by

randomly combining point values sampled in Step 2 to
Step 5, get the corresponding response by experiment: f

xupper1 ; xupper2 ; x120
� � ¼ 1; and calculate bf 1 xupper1

� � ¼ 0 andbf 2 xupper2

� � ¼ 0:5 using the first-order PCE-HDMRmod-
el obtained in Eqs. (30)–(32). Check whether there is
higher-order HDMR component function with ε1 =
0 . 0 0 1 :

f xupper1 ;xupper2 ;x120ð Þ−bf 1 xupper1ð Þ−bf 2 xupper2ð Þ− f 0
f xupper1 ;xupper2 ;x120ð Þ

����
���� ¼ 0:5 > ε1:

7. Therefore, it is deemed that there exists correlation be-
tween x1 and x2. Choose four sample points {[0, 0,
0.5]T, [0, 1, 0.5]T, [1, 0, 0.5]T, [1, 1, 0.5]T} respectively at
the lower and upper limits of the range of x1 and x2, eval-
uate their responses, and construct the second-order com-
ponent functionbf 12 x1; x2ð Þ ¼ − 1

2 L1 x1ð ÞL1 x2ð Þ ¼ − 1
2 x1x2; x1; x2∈ −1; 1½ �.

Transforming the design space of variables x1 and x2 from
[−1, 1]2 to [0, 1]2, we will havebf 12 x1; x2ð Þ ¼ x1 þ x2−2x1x2− 1

2. Generate a new point
5
18 ; 0; 0:5
� �T

as in Step 6, and find that the convergence

criterion
bf 12 x1;x2ð Þ− f 12 x1;x2ð Þ

f 12 x1;x2ð Þ

����
����≤ε1 is satisfied. Therefore,

terminate the construction of bf 12 x1; x2ð Þ, and we can get

bf 12 x1; x2ð Þ¼x1þx2−2x1x2−
1

2
≡ f 12 x1; x2ð Þ ð33Þ

8. Repeat the above Step 6 to Step 7 to construct the second-
order HDMR component functions for all pairs of input
variables. We can get that there is no component functionbf 13 x1; x3ð Þ, and

bf 23 x2; x3ð Þ¼−
x2
2
−
x3
2
þx2x3þ 1

4
≡ f 23 x2; x3ð Þ ð34Þ

9. By substituting Eqs. (28) and (30)–(34) into Eq. (26), the
PCE-HDMR model for approximating the analytical
function (27) is finally obtained:

bf xð Þ¼ x1−1ð Þ2þ x1−x2ð Þ2þx2x3þ0:5≡ f xð Þ ð35Þ

It is found that not only the PCE-HDMR model (35) but
also its component functions, i.e., Eqs. (30)–(34), are the same
as their analytical expressions, meaning that the proposed
PCE-HDMR can exactly reproduce the mathematical function
of second-order polynomials at both component and whole

function levels. The component PCE models in the PCE-
HDMR for the 3D analytical function are depicted in Fig. 3,
where circles are sample points and black dots are prediction
points. Table 1 compares the performance of the proposed
PCE-HDMR and three well-established HDMRs (i.e., RBF-
HDMR, SVR-HDMR, and KRG-HDMR) in terms of four
performance metrics described in Section 4 and the required
number of expensive model evaluations (NOE). Note that the
best results, i.e., the largest R2 value and the smallest RAAE,
RMAE, RMSE, and NOE values, are marked in bold. It is
observed that the proposed PCE-HDMR outperforms other
three HDMRs in terms of all five performance criteria, espe-
cially for RAAE, RMAE, and RMSE with 12 to 13 lower
orders of magnitude.

4 Numerical results and discussion

4.1 Test suite and setting

In order to comprehensively evaluate the performance of the
proposed PCE-HDMR and eliminate the randomness and bias
of few test problems, this study establishes a suite of fourteen
benchmark functions and five engineering examples
consisting of 13 high-dimensional (from 10D to 30D) and 6
low-dimensional (from 2D to 7D) problems. As provided in
Table 2, the benchmark functions (Ishigami and Homma
1990; Shan and Wang 2010a; Wang et al. 2011; Cai et al.
2016) have been carefully chosen to demonstrate various as-
pects of predicted responses such as being highly nonlinear,
non-monotonic, and multimodal. For engineering examples
given in Table 3, the first one (E1) is the design of a direct
cell system using methanol as the fuel to generate electricity
via reaction with oxygen in the air (Yang and Xue 2015). The
semi-empirical output voltage fV of a specific fuel cell system
is influenced by the current density I (A/cm2), temperature T
(K), methanol concentration CME (M), methanol flow rate
FME (ccm), and air flow rate FAIR (ccm). The second example
(E2) is to measure the performance of a piston moving within
a cylinder by the time fC it takes to complete one cycle (Kenett
and Zacks 1998). The design variables include the piston
weight M (kg), piston surface area S (m2), initial gas volume
V0 (m

3), spring coefficient k (N/m), atmospheric pressure P0

(N/m2), ambient temperature Ta (K), and filling gas tempera-
ture T0 (K). The third example (E3) is to estimate the maxi-
mum deflection fW of a 23-bar truss structure with its upper
portion subjected to vertical loads (Blatman and Sudret 2011).
The design variables are the Young’s moduli E1 and E2 (Pa),
cross-sectional areas A1 and A2 (m

2), and applied loads P1-P6

(N). The fourth example (E4) models the tip deflection fδ of a
ten-stepped cantilever beam with a force of P = 50 kN in the
tip and a material of E = 2 × 1011 Pa and σallow = 3.5 × 108 Pa
(Cheng et al. 2015). The width bi (m), height hi (m), and
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length li (m) of each step are selected as design variables. This
problem is of high complexity as the global optimum is un-
known. The last example (E5) is to evaluate the maximum
stress σmax (kN/m

2) of the main arch structure in a prestressed
hydraulic press machinery (Zeng 2009). The design variables
are Young’s modulus E (Pa), Poisson’s ratio μ, inner and
outer radii of the main arch R1 and R2 (m), column height H

(m), thickness of the arch structure D (m), and operating load
P (kN/m2).

Prediction accuracy of the HDMRmodels can bemeasured
with different kinds of error metrics. To have an exhaustive
study on the proposed PCE-HDMR, and also to make a com-
prehensive comparison with the existing HDMRs, four com-
monly used performance criteria are selected: coefficient of

Table 1 Performance of PCE-HDMR and three HDMRs for the 3D analytical function

Model R2 RAAE RMAE RMSE NOE

RBF-HDMR 9.9999E-01 1.3205E-03 8.5096E-03 8.7807E-04 52.4

SVR-HDMR 9.9998E-01 1.9529E-03 7.9972E-03 1.0775E-03 31.3

KRG-HDMR 9.9988E-01 7.0714E-03 4.2692E-02 4.4642E-03 39.1

PCE-HDMR 1 3.8388E-16 2.0465E-15 2.2203E-16 29

Fig. 3 The component PCE
models in the PCE-HDMR for the
3D analytical function
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determination (R2), relative average absolute error (RAAE),
relative maximum absolute error (RMAE), and root mean
square error (RMSE). They are formulated as follows:

R2¼1−
∑nt

i¼1 f xið Þ−bf xið Þ
h i2

∑nt
i¼1 f xið Þ− f

h i2 ð36Þ

RAAE ¼
∑nt

i¼1 f xið Þ−bf xið Þ
��� ���
nt � std

ð37Þ

RMAE ¼
max1≤ i≤nt f xið Þ−bf xið Þ

��� ���
std

ð38Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑nt

i¼1 f xið Þ−bf xið Þ
h i2

nt

vuut
ð39Þ

where nt is the number of test points, xi is one of the nt test
points, f is the average response over the nt points, and std
stands for standard deviation of the function responses at nt
test points. It is apparent that R2, RAAE, and RMSE provide
global error measurements over the entire design domain,

Table 2 Fourteen benchmark functions

No. Expression Design space

F1 f xð Þ ¼ 2x21−1:05x41 þ x61
6 −x1x2−x

2
2

x∈[−2,2]2

F2
f xð Þ ¼ x2−1:275 x1

π

� �2 þ 5x1
π −6

� �2
þ 10 1− 0:125

π

� �
cos x1ð Þ þ 10

x1∈ −5; 0½ �
x2∈ 10; 15½ �

F3 f xð Þ ¼ sin x1ð Þ þ 7sin2 x2ð Þ þ 0:1x41sin x3ð Þ x∈[−π,π]3

F4 f xð Þ ¼ x21 þ x22 þ x1x2−14x1−16x2 þ x3−10ð Þ2 þ 4 x4−5ð Þ2
þ x5−3ð Þ2 þ 2 x6−1ð Þ2 þ 5x27 þ 7 x8−11ð Þ2 þ 2 x9−10ð Þ2

þ x10−7ð Þ2 þ 45

x∈[−10,11]10

F5 f xð Þ ¼ ∑9
i¼1 x2iþ1−xi

� �2 þ xi−1ð Þ2
� �

x∈[−3,3]10

F6 f xð Þ ¼ ∑10
i¼1e

xi ci þ xi−ln ∑10
k¼1e

xk
� �� �

x∈[−5,5]10

F7 f xð Þ ¼ ∑10
i¼1 x2i −10cos 2πxið Þ þ 10

� �
x∈[−1,1]10

F8 f xð Þ ¼ ∑10
i¼1 ln xi−2ð Þð Þ2 þ ln 10−xið Þð Þ2

h i
- ∏10

i¼1xi
� �0:2 x∈[2.1,9.9]10

F9 f xð Þ ¼ ∑10
i¼1xi ci þ ln xi

x1þ…þx10

� �
x∈[1e−6,10]10

F10 f xð Þ ¼ ∑16
i¼1∑

16
j¼1aij x

2
i þ xi þ 1

� �
x2j þ x j þ 1

� �
x∈[0,5]16

F11 f xð Þ ¼ x1−1ð Þ2 þ ∑16
i¼2i 2x

2
i −xi−1

� �2 x∈[−5,5]16

F12 f xð Þ ¼ ∑19
i¼1 x2iþ1−xi

� �2 þ xi−1ð Þ2
� �

x∈[−3,3]20

F13 f xð Þ ¼ ∑20
i¼1 x2i −10cos 2πxið Þ þ 10

� �
x∈[−1,1]20

F14 f xð Þ ¼ ∑29
i¼1 x2iþ1−xi

� �2 þ xi−1ð Þ2
� �

x∈[−3,3]30

For F6 and F9:
c=−1×[6.089,17.164,34.054,5.914,24.721,14.986,24.100,10.708,26.662,22.179]
For F10:

aij
� �

rows1−8 ¼

1 0 0 1
0 1 1 0

0 0 1 1
0 0 1 0

0 0 1 0
0 0 0 1

0 0 1 0
0 0 1 0

0 0 0 0
0 1 0 0

0 0 0 1
0 0 0 0

1 1 0 0
0 0 1 0

0 1 0 0
0 0 1 0

0 0 0 0
0 0 0 0

1 1 0 0
0 1 0 1

0 0 0 0
0 0 0 0

0 0 1 0
0 0 0 1

0 1 0 1
0 0 0 0

0 0 0 1
0 0 1 0

0 0 1 0
0 1 0 0

1 0 0 0
0 0 1 0

2
6666666664

3
7777777775

aij
� �

rows9−16 ¼

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

1 0 0 1
0 1 0 0

0 0 0 1
0 1 0 0

0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

1 1 0 0
0 1 0 0

0 0 0 0
0 0 0 0

0 0 1 0
0 0 0 1

2
6666666664

3
7777777775
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Table 3 Five engineering examples
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while RMAE is indicative of local deviations between the
predictions and true responses. R2 ranges from 0 to 1. The
larger value the R2 has, the more accurate the HDMR model
is. For metrics RAAE, RMAE, and RMSE, when their values
are smaller, the metamodel is more accurate. These perfor-
mance criteria are calculated using nt = 5000 randomly select-
ed test points, and the process is repeated for ten times to
obtain robust results with the mean values.

4.2 Results and discussion

4.2.1 Comparison with other HDMRs

In the numerical experiments, a detailed comparison between
the proposed PCE-HDMR and other well-established
HDMRs including RBF-HDMR, SVR-HDMR, and KRG-
HDMR has been carried out. DIRECT sampling method is
adopted for all four HDMRs. Table 4 provides the modeling
results of the four HDMRs for the fourteen benchmark func-
tions and five engineering examples. The best results are
marked in bold. The data shows the Cut-HDMR structure is
effective in approximating various problems of both high and
low dimensions, except that RBF-HDMR gives undesirable
results for functions F7 (10D) and F13 (20D). From the over-
all comparison, it is observed that the proposed PCE-HDMR
has the best accuracy in terms of R2, RAAE, RMAE, and
RMSE for 16 out of 19 test problems (except for the second
best RMAE values of F9, E3, and E4 and RAAE value of E4
and the comparable RMAE value of E2) and best efficiency in
terms of NOE for 16 out of 19 test problems. On the other
hand, in terms of R2, RAAE, RMAE, and RMSE, RBF-
HDMR is superior to SVR-HDMR and KRG-HDMR for test
problems F1, F2, F4, F5, F6, F10, F11, F12, F14, and E3,
while SVR-HDMR outperforms RBF-HDMR and KRG-
HDMR for F3, F13, and E1, and KRG-HDMR is more desir-
able than RBF-HDMR and SVR-HDMR for F7 and F8.
However, RBF-HDMR is less efficient than both SVR-
HDMR and KRG-HDMR in terms of NOE for 17 out of 19
test problems. As described in Section 1, this demonstrates the
prediction uncertainty usually encountered by the existing
stand-alone Cut-HDMRs such as RBF-HDMR, SVR-
HDMR, and KRG-HDMR. In summary, as a novel stand-
alone Cut-HDMR, the PCE-HDMR is robust, accurate, and
efficient in modeling a variety of problems including engi-
neering examples compared with other stand-alone Cut-
HDMRs, especially when it is very difficult (if not impossible)
to know a priori which HDMRmodel is most desirable for an
unknown problem.

It is also noted from Table 4 that for the test problems in
purely polynomial form, e.g., F1 (2D, six-order polynomial),
F4 (10D, second-order polynomial), F5 (10D, four-order
polynomial), F11 (16D, four-order polynomial), F12 (20D,
four-order polynomial), and F14 (30D, four-order

polynomial), the PCE-HDMR can produce super accurate re-
sults with the R2 value of exact 1, RAAE value of 10−16–
10−15, RMAE value of 10−15–10−14, and RMSE value of
10−14–10−11, no matter whether the problem dimension and
polynomial order are high or low. The values of RAAE,
RMAE, and RMSE by the PCE-HDMR are 12 to 14 orders
of magnitude lower than those by RBF-HDMR, SVR-
HDMR, and KRG-HDMR. For the non-polynomial functions
such as F2, F3, and F13, the results of RAAE, RMAE, and
RMSE by the PCE-HDMR are still several orders (ranging
from 1 to 6) of magnitude more accurate than those by the
other three HDMRs, and for complex engineering examples
such as E1, E3, and E4, they are generally much lower than
those by other benchmark HDMRs. The above superiority of
the PCE-HDMR is attributed to the high reproducibility and
capability of the PCE in the form of expanded multivariate
orthonormal polynomials in constructing the component func-
tions of Cut-HDMR. Overall, the proposed PCE-HDMR is
more capable and versatile than the benchmark HDMRs in
modeling problems of both functional form and engineering
practice.

The effect of problem dimensionality on the accuracy and
efficiency of the proposed PCE-HDMR and other three
benchmark HDMRs is investigated. Functions F5, F12, and
F14 in Table 2 have the same expression but different dimen-
sions of 10, 20, and 30, respectively. As the dimension in-
creases, it can be seen from Table 4 that for the three bench-
mark HDMRs, the accuracy in terms of R2, RAAE, RMAE,
and RMSE and efficiency in terms of NOE generally de-
crease. However, as the dimension increases from 10 to 30,
the R2 value remains exactly 1 for the PCE-HDMR, which
indicates its robustness and reproducibility in modeling high-
dimensional problems. Also, functions F7 and F13 have the
same expression but different dimensions of 10 and 20, re-
spectively. It is worthy to note that KRG-HDMR has the best
accuracy for F7, while PCE-HDMR is the second best. When
the dimension increases to 20 (i.e., F13), PCE-HDMR outper-
forms KRG-HDMR and two other benchmark HDMRs in
terms of all five performance criteria. This indicates that the
superiority of the PCE-HDMR over other benchmark
HDMRs becomes more significant for problems with higher
dimensions.

To have a general perspective of the overall performances,
Table 5 compares the mean values and standard deviations of
all the error metrics (R2, RAAE, RMAE, and RMSE) for the
proposed PCE-HDMR and other three HDMRs across all
nineteen test problems. The best results are marked in bold.
It is observed that the proposed PCE-HDMR obtains the best
global performance in terms of both accuracy and robustness
based on all four error metrics (except that the robustness of
PCE-HDMR in terms of RMSE is the second best and very
close to that of RBF-HDMR). Among the three benchmark
algorithms, KRG-HDMR has the best accuracy and
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Table 4 Comparison of PCE-HDMR and other HDMRs for the fourteen benchmark functions and five engineering examples

f Model R2 RAAE RMAE RMSE NOE

F1 RBF-HDMR 1.0000 0.0005 0.0037 0.0014 47.2

SVR-HDMR 0.9955 0.0292 0.0587 0.0613 26

KRG-HDMR 0.9999 0.0050 0.0350 0.0151 33.8

PCE-HDMR 1 9.0917E-15 3.5186E-14 2.1604E-14 22

F2 RBF-HDMR 1.0000 0.0007 0.0047 0.0403 28

SVR-HDMR 0.9992 0.0159 0.0328 0.6326 19.1

KRG-HDMR 1.0000 0.0033 0.0200 0.1825 20.8

PCE-HDMR 1.0000 9.0045E-08 7.2449E-07 6.0352E-06 20

F3 RBF-HDMR 0.9945 0.0575 0.2735 0.2663 126

SVR-HDMR 0.9991 0.0142 0.1477 0.0878 91.2

KRG-HDMR 0.9912 0.0329 0.5387 0.2634 78

PCE-HDMR 1.0000 0.0025 0.0294 0.0171 63

F4 RBF-HDMR 1.0000 0.0001 0.0011 0.2322 125.5

SVR-HDMR 1.0000 0.0010 0.0030 1.2590 109.1

KRG-HDMR 1.0000 0.0005 0.0029 0.8045 124.5

PCE-HDMR 1 3.2488E-16 2.0509E-15 4.5058E-13 100

F5 RBF-HDMR 9.9999E-01 0.0017 0.0138 0.2351 317.8

SVR-HDMR 0.9589 0.1491 0.5897 17.5810 203.4

KRG-HDMR 0.9993 0.0176 0.1103 2.3050 258.4

PCE-HDMR 1 5.1717E-16 3.6499E-15 6.5406E-14 159

F6 RBF-HDMR 0.9967 0.0352 0.5253 1.1758E+02 1116.1

SVR-HDMR 0.9906 0.0636 0.6935 1.9933E+02 724.6

KRG-HDMR 0.9867 0.0769 0.7528 2.3803E+02 700.2

PCE-HDMR 0.9950 0.0507 0.5137 1.4527E+02 366.6

F7 RBF-HDMR 0.5872 0.5653 1.7221 14.2167 226

SVR-HDMR 1.0000 0.0034 0.0200 0.1014 181.1

KRG-HDMR 1.0000 0.0000 0.0000 0.0001 186

PCE-HDMR 1.0000 0.0032 0.0180 0.0915 176

F8 RBF-HDMR 0.9737 0.1242 0.7038 1.4650 774.9

SVR-HDMR 0.9709 0.1295 0.7369 1.5357 666.1

KRG-HDMR 0.9787 0.1108 0.6835 1.3096 571.2

PCE-HDMR 0.9867 0.0872 0.5289 1.0298 643.4

F9 RBF-HDMR 1.0000 0.0021 0.0207 0.5518 264.2

SVR-HDMR 1.0000 0.0034 0.0238 0.9048 306

KRG-HDMR 1.0000 0.0024 0.0170 0.6301 266

PCE-HDMR 1.0000 0.0014 0.0172 0.4067 276

F10 RBF-HDMR 1.0000 0.0035 0.0206 12.4037 674.3

SVR-HDMR 0.9988 0.0268 0.1111 86.0848 430.3

KRG-HDMR 0.9996 0.0146 0.0843 49.8638 439.7

PCE-HDMR 1 2.5176E-09 1.1454E-08 8.3332E-06 368

F11 RBF-HDMR 1.0000 0.0009 0.0066 33.5990 611.2

SVR-HDMR 0.9908 0.0742 0.3076 2.4441E+03 398.3

KRG-HDMR 0.9997 0.0119 0.0641 4.1724E+02 437.7

PCE-HDMR 1 6.2265E-16 4.1797E-15 2.2146E-11 307

F12 RBF-HDMR 9.9993E-01 0.0049 0.0350 0.9656 722

SVR-HDMR 0.9454 0.1838 0.8379 31.3501 488.1

KRG-HDMR 0.9990 0.0234 0.1234 4.1304 609.9

PCE-HDMR 1 8.1306E-16 5.7474E-15 1.4856E-13 424
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robustness in terms of R2, RAAE, and RMAE, followed by
SVR-HDMR and RBF-HDMR. Nevertheless, RBF-HDMR
outperforms in terms of RMSE, followed by KRG-HDMR
and SVR-HDMR. This shows again the prediction uncertainty
for the existing RBF-HDMR, SVR-HDMR, and KRG-
HDMR. Boxplots of the four error metrics for the PCE-
HDMR and benchmark algorithms are depicted in Fig. 4,
which validates the findings from Table 5. It is shown that
the PCE-HDMR achieves the best medians (highest for R2 and
lowest for RAAE, RMAE, and RMSE) and shortest interquar-
tile range among all the algorithms.

To further analyze the error values, formal significance
tests are conducted for more rigorous comparisons. As the
boxplots in Fig. 4 show that the error values are highly skewed
and do not satisfy the requirements of the classical t-test (Li
et al. 2010; Gibbons and Chakraborti 2014), the assumption-
freeWilcoxon signed-rank test (significance level of 0.05 with
two tails) is employed to test the matched HDMR pairs. The

p values of Wilcoxon signed-rank tests are presented in the
upper triangle of Table 6. It can be found that PCE-HDMR
significantly outperforms RBF-HDMR, SVR-HDMR, and
KRG-HDMR under all error metrics with the p values much
smaller than 0.05. It is also seen that regarding the error met-
rics R2, RAAE, and RMAE, there are no statistically signifi-
cant differences in the paired comparisons among RBF-
HDMR, SVR-HDMR, and KRG-HDMR. These findings
demonstrate again that PCE-HDMR is the most accurate al-
gorithm among the four HDMR metamodels.

4.2.2 Impact of the PCE degree

To explore the effect of the PCE degrees p1 and p2 respective-
ly adopted in the 1D and 2D PCE models on the accuracy and
efficiency of the proposed PCE-HDMR, a non-polynomial
function F6 (10D) is selected as a representative for further
study. Table 7 and Table 8 give the results of five performance

Table 4 (continued)

f Model R2 RAAE RMAE RMSE NOE

F13 RBF-HDMR 2.8925E-01 0.7785 1.9465 26.3810 551

SVR-HDMR 9.9998E-01 0.0035 0.0178 0.1411 456

KRG-HDMR 9.9558E-01 0.0570 0.2213 2.0737 411

PCE-HDMR 9.9999E-01 0.0022 0.0113 0.0883 351

F14 RBF-HDMR 9.9991E-01 0.0058 0.0400 1.4202 1255.1

SVR-HDMR 9.5267E-01 0.1734 0.7657 36.6833 878.7

KRG-HDMR 9.9831E-01 0.0322 0.1685 6.8943 1048.9

PCE-HDMR 1 1.1841E-15 7.7783E-15 2.6148E-13 789

E1 RBF-HDMR 0.9324 0.1425 1.2719 0.0441 315.1

SVR-HDMR 0.9972 0.0322 0.3070 0.0103 167.7

KRG-HDMR 0.9851 0.0605 0.6037 0.0194 174.6

PCE-HDMR 0.9978 0.0280 0.2734 0.0091 153.6

E2 RBF-HDMR 0.9815 0.0794 1.5096 0.0188 180.6

SVR-HDMR 0.9809 0.0766 1.4939 0.0192 174.3

KRG-HDMR 0.9813 0.0734 1.5274 0.0191 163.2

PCE-HDMR 0.9821 0.0725 1.5292 0.0187 157.5

E3 RBF-HDMR 9.9999E-01 0.0017 0.0114 1.4186E-05 209.8

SVR-HDMR 9.9986E-01 0.0050 0.0230 4.0747E-05 219.2

KRG-HDMR 9.9995E-01 0.0051 0.0232 4.0567E-05 187.9

PCE-HDMR 1.0000 0.0011 0.0115 1.1426E-05 165.4

E4 RBF-HDMR 9.9305E-01 0.0375 1.3030 186.9312 1088

SVR-HDMR 9.9328E-01 0.0461 1.2816 180.2053 854.7

KRG-HDMR 9.9313E-01 0.0447 1.2049 181.9374 835.9

PCE-HDMR 9.9333E-01 0.0437 1.2368 177.7583 805.7

E5 RBF-HDMR 0.9999 0.0051 0.0516 58.8086 120.6

SVR-HDMR 0.9999 0.0061 0.0450 65.5325 112.6

KRG-HDMR 0.9999 0.0070 0.0481 73.5540 105

PCE-HDMR 0.9999 0.0059 0.0481 63.5316 98.8
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criteria varying with the PCE degrees p1 and p2, respectively.
For the convenience of comparison, these results are also
depicted in Figs. 5, 6, 7 and 8.

It is observed that compared with the error metrics of
RMAE and RMSE, the variations of R2 and RAAE are almost
negligible as the PCE degrees of p1 and p2 change from 6 to 14

Table 5 Comparison of the average accuracy and robustness for the PCE-HDMR and other HDMRs across all test problems

Model Error metrics

R2 RAAE RMAE RMSE

Mean Std Mean Std Mean Std Mean Std

RBF-HDMR 0.980 0.043 0.060 0.101 0.409 0.539 22.842 49.332

SVR-HDMR 0.988 0.018 0.055 0.061 0.395 0.460 161.346 556.044

KRG-HDMR 0.995 0.007 0.030 0.032 0.328 0.444 51.540 110.892

PCE-HDMR 0.998 0.005 0.016 0.027 0.222 0.444 20.433 52.071

Fig. 4 Boxplots of four error
metrics: R2, RAAE, RMAE, and
RMSE
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and from 11 to 19, respectively. On the other hand, when the
PCE degree p1 is bigger than 10 (p2 is fixed at 15), the values
of RMAE and RMSE are generally lower than those with p1
less than 10 (except for the RMAE value with p1 = 13 and the
RMSE value with p1 = 12). This indicates that a larger value
of p1, i.e., p1 ≥ 10, is preferred in the PCE-HDMR. In terms of

efficiency, the NOE reaches it minimum value when p1 = 10,
as shown in Fig. 7. To this end, a value of p1 = 10 is recom-
mended for the PCE-HDMR. Similarly, in consideration of
both accuracy and efficiency when p2 varies from 11 to 19
with p1 fixed at 10, a value of p2 = 15 is suggested. Therefore,
the values of p1 = 10 and p2 = 15 are recommended for the

Table 6 p values of Wilcoxon signed-rank tests

Error metrics Model RBF-
HDMR

SVR-
HDMR

KRG-
HDMR

PCE-
HDMR

R2 RBF-HDMR – 0.314 0.421 0.003

SVR-HDMR – – 0.159 1.318E-04

KRG-HDMR – – – 2.137E-04

RAAE RBF-HDMR – 0.260 0.717 0.011

SVR-HDMR – – 0.107 1.318E-04

KRG-HDMR – – – 3.416E-04

RMAE RBF-HDMR – 0.520 0.520 0.001

SVR-HDMR – – 0.295 0.001

KRG-HDMR – – – 0.003

RMSE RBF-HDMR – 0.044 0.126 0.010

SVR-HDMR – – 0.198 1.318E-04

KRG-HDMR – – – 2.926E-04

Table 7 Effect of the PCE degree
p1 on the performance criteria for
function F6 with p2 = 15

p1 R2 RAAE RMAE RMSE NOE

6 0.9946 0.0530 0.5215 151.2133 407.2

7 0.9948 0.0511 0.5271 149.1394 370.4

8 0.9947 0.0511 0.5271 150.2379 369.4

9 0.9947 0.0515 0.5259 149.4615 366.9

10 0.9949 0.0509 0.5003 147.0999 362.9

11 0.9949 0.0510 0.5126 146.7669 368.6

12 0.9946 0.0524 0.4814 151.4693 374.9

13 0.9951 0.0493 0.5340 143.9815 368

14 0.9950 0.0496 0.5035 145.6823 368.2

Table 8 Effect of the PCE degree
p2 on the performance criteria for
function F6 with p1 = 10

p2 R2 RAAE RMAE RMSE NOE

11 0.9952 0.0484 0.5408 141.9338 366.2

12 0.9945 0.0519 0.5271 153.9544 367.2

13 0.9948 0.0509 0.5102 148.0988 367.5

14 0.9951 0.0498 0.4821 143.7930 365.3

15 0.9949 0.0509 0.5003 147.0999 362.9

16 0.9947 0.0512 0.5618 150.9600 365.9

17 0.9949 0.0501 0.4807 146.0904 368.2

18 0.9948 0.0506 0.5070 149.3687 367

19 0.9949 0.0504 0.4976 147.1583 369.4

An adaptive PCE-HDMR metamodeling approach for high-dimensional problems 157



proposed PCE-HDMR and have been used for the four-
teen benchmark functions and five engineering examples
in this study.

4.2.3 Running time

To illustrate the modeling efficiency, Table 9 provides the
running times of the PCE-HDMR and three benchmark
HDMRs for all the nineteen cases. All the numerical experi-
ments are performed in a MATLAB environment with an
AMD 3.60 GHz CPU. It is found that the RBF-HDMR has
the best efficiency in terms of the model running time, follow-
ed by KRG-HDMR, PCE-HDMR, and SVR-HDMR.
However, as described in Subsection 4.2.1, RBF-HDMR re-
quires the largest number of NOE (i.e., samples) for 17 out of
19 test problems among all four algorithms. The running time
of PCE-HDMR mainly comes from the process of construct-
ing the component functions of Cut-HDMR by using the PCE
and solving the corresponding PC coefficients.

It is worth noting that the PCE-HDMR model is proposed
for expensive simulation-based problems, in which a typical
simulation may need several hours or even a few days
(Gorissen et al. 2007). Therefore, in practice, the running time

of PCE-HDMR is negligible compared to the time spent on
simulations. Although the running time of PCE-HDMR itself
is generally larger than those of the RBF-HDMR and KRG-
HDMR, a great saving in the time spent on simulations has
been made by the proposed PCE-HDMR. As shown in
Table 4, for example, the RBF-HDMR requires 1255 samples
(simulations) to achieve the model accuracy of R2 = 9.9991E
− 01, RAAE = 0.0058, RMAE = 0.0400, and RMSE = 1.4202
for the F14 (30D) case, whereas a much higher model accu-
racy of R2 = 1, RAAE = 1.1841E − 15, RMAE = 7.7783E −
15, and RMSE = 2.6148E − 13 is achieved by the PCE-
HDMR with only 789 samples.

5 Conclusions

This article proposes a novel metamodeling approach, namely
an adaptive PCE-HDMR, for high-dimensional problems. In
the PCE-HDMR, the PCEmetamodel in the form of multivar-
iate orthonormal polynomials is employed for constructing the
component functions of the hierarchical Cut-HDMR. The
DIRECT sampling method is incorporated into the PCE-
HDMR to adaptively refine the model in a robust and efficient

Fig. 5 Effect of the PCE degree
p1 in the PCE-HDMR on the
values of R2, RAAE, RMAE, and
RMSE for function F6 with p2 =
15
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way. The performance of the proposed PCE-HDMR is exam-
ined by fourteen benchmark functions and five engineering
examples consisting of thirteen high-dimensional and six
low-dimensional problems and compared with three well-
established HDMRs. The effects of functional form, problem
dimensionality, and PCE degree on the accuracy and efficien-
cy of the PCE-HDMR are also investigated. From the

extensive numerical results, some concluding remarks can
be drawn as follows:

& Compared with the well-established stand-alone Cut-
HDMRs, e.g., RBF-HDMR, SVR-HDMR, and KRG-
HDMR, the proposed PCE-HDMR as a novel stand-
alone Cut-HDMR provides more accurate and robust

Fig. 6 Effect of the PCE degree
p2 in the PCE-HDMR on the
values of R2, RAAE, RMAE, and
RMSE for function F6 with p1 =
10

Fig. 7 Effect of the PCE degree p1 in the PCE-HDMR on the NOE for
function F6 with p2 = 15

Fig. 8 Effect of the PCE degree p2 in the PCE-HDMR on the NOE for
function F6 with p1 = 10
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predictions in terms of both global (R2, RAAE, and
RMSE) and local (RMAE) error measurements and needs
far fewer number of expensive model evaluations/
simulations for a vast majority of test problems including
engineering examples.

& Due to the capability and reproducibility of the PCE, the
superiority of the PCE-HDMR over other benchmark
HDMRs is more significant for functions of more
polynomial-like forms, problems with higher dimensions,
and PCE degrees with relatively larger values (p1 = 10 and
p2 = 15 are recommended).

& Although PCE-HDMR spends more running time than
RBF-HDMR and KRG-HDMR for most test problems
in this study, it has made a large portion of time-saving
on the expensive simulations, compared to which the extra
running time of PCE-HDMR is negligible.

In this article, the DIRECT sampling method is adopted to
adaptively refine the PCE-HDMR model. It is worth noting
that the proposed algorithm can also use other adaptive sam-
pling algorithms such as the maximin sampling approach
(Johnson et al. 1990) and CV-Voronoi sampling approach
(Xu et al. 2014). In addition, besides the adopted Legendre
polynomials, other types of univariate orthogonal polynomials
(Xiu and Karniadakis 2002) can be used for constructing the
polynomial chaos in the PCE-HDMR.

At current stage, a second-order HDMR expansion is
adopted for the proposed PCE-HDMR. In this regard, the
main disadvantage of the method is that, for an underlying
problem with highly correlated variables, the proposed algo-
rithm may not work well. Further improvements and tech-
niques are needed to extend beyond the second order while
keeping the computational cost affordable. Moreover, new
development is demanded to incorporate existing samples
and/or noisy expansive model into the present PCE-HDMR
for engineering practice.
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