• 其他栏目

    卢永刚

    • 副教授 硕士生导师
    • 性别:男
    • 学历:博士研究生毕业
    • 学位:博士
    • 所在单位:能源与动力工程学院
    • 学科:流体机械及工程
    • 办公地点:江苏大学能动大楼1417室
    • 电子邮箱:luyg@ujs.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    个人简介:

    一、个人概况

    卢永刚,男,博士,副教授,硕士生导师,清华大学博士后。主要从事流体机械多相流动多场耦合理论研究,以及新能源设备研发和工程应用。主持或主要参与国家级和省部级科研课题12项,企业委托课题10余项;获省部级科技进步奖二等奖3项、三等奖1项;共发表学术论文30余篇,其中以第一或通讯作者发表SCI论文15篇;发明专利授权49,实用新型专利授权17项。

    二、主要研究方向

    (1) 流体机械多相瞬变流动理论与流动控制

    (2) 流体机械结构强度优化设计与多场耦合

    (3) 核电泵、水轮机、水泵水轮机、混输泵等多学科设计优化

    三、讲授课程

    (1) 流体机械强度计算(本科)

    (2) 流体机械内流激励理论及控制(研究生)

    (3) 《Applied Process Assessment with Machine Learning》(英文助教

    四、科研成果

    1、科研项目

    (1) 江苏省自然科学基金青年项目20万,主持

    (2) 中国博士后科学基金面上项目8万,主持

    (3) 水沙科学国家重点实验室及宁夏水联网联合基金,梯级扬水泵站优化调度与智能运维技术,10万,主持

    (4) 国家自然科学基金面上项目,海上移动核电站主循环泵汽液两相全特性瞬态机理,50万,参与(第2)

    (5) 先进反应堆教育部重点实验室开放课题,汽液两相工况核主泵非稳态流动及涡动力学特征,2万,主持

    (6) 清华大学,水泵水轮机及输水系统过渡过程三维水激振动响应分析,30万,主持

    (7) 哈工大机器人(合肥)国际研究院(技术服务),基于XXX工业母机故障监测系统,25万,主持

    (8) 江苏瑞阳环保有限公司,重金属轴流泵的多学科优化设计,25万,主持

    (9) 国家重点研发子任务,LNG装卸三维流动特性及振动响应分析评估,600万,主研

    (10) 山东潍坊抽水蓄能有限公司,山东潍坊抽水蓄能水泵水轮机及输水系统三维水激振动,290万,主研

    (11) 中国三峡建工集团有限公司,1000MW水轮发电机组动力学特性多场耦合研究,672万,主研

    (12) 国家电投集团科学技术研究院,高温铅液态铅铋泵(A)研制采购项目)52万,主研

    (13) 江苏省重点研发计划,海水移动核电高温重金属核主泵关键技术研发,120万,主研

    (14) 江苏省重点研发计划,铅铋冷却反应堆高温液态金属主循环泵关键技术研发,120万,参研

    (15) 水沙科学国家重点实验室课题,变速抽蓄机组双调方式流固耦合振动机理研究,150万,参研

    (16) 哈尔滨电气动力装备有限公司,混流式轴封型反应堆主泵水力部件全特性试验研究,160万,参研

    2、学术论文代表作

    (1) Lu Y G, Zhu R S, Wang X L, et al. Study on gas-liquid two-phase all-characteristics of CAP1400 nuclear main pump[J]. Nuclear Engineering and Design, 2017, 319: 140-148.

    (2) Lu Y G, Zhu R S, Wang X L, et al. Study on the complete rotational characteristic of coolant pump in the gas-liquid two-phase operating condition[J]. Annals of Nuclear Energy, 2019, 123: 180-189.

    (3) Lu Y G, Zhu R S, Fu Q, et al. Research on the structure design of the LBE reactor coolant pump in the lead base heap[J]. Nuclear Engineering and Technology, 2019, 51(2): 546-555.

    (4) Lu Y G, Zhu R S, Wang X L, et al. Experimental study on transient performance in the coasting transition process of shutdown for reactor coolant pump[J]. Nuclear Engineering and Design, 2019, 346: 192-199.

    (5) Lu Y G, Yun Long, Zhu R S, et al. Transient Structural load characteristics of reactor coolant pump rotor system in rotor seizure accident [J]. Annals of Nuclear Energy, 2021, 164: 108631.

    (6) Lu Y G, Wang X L, Fu Q*, et al. Comparative analysis of internal flow characteristics of LBE-cooled fast reactor main coolant pump with different structures under reverse rotation accident conditions[J]. Nuclear Engineering and Technology, 2021, 53(7): 2509-2522.

    (7) Lu Y G, Wang Z W, Zhu R S, et al.  Study on flow characteristics in LBE-cooled main coolant pump under positive rotating condition [J]. Nuclear Engineering and Technology, 2022.

    (8) Lu Y G, Zhao W, Alexandre P*, et al. Shutdown idling performance of the nuclear main coolant pump under station blackout accident: An optimization study[J]. Part A: Journal of Power and Energy, 2022.

    (9) Wang X L, Lu Y G, Zhu R S*, et al. Study on pressure pulsation characteristics of reactor coolant pump during the idling transition process[J]. Journal of Vibration and Control, 2019, 25(18): 2509-2522.

    (10) Wang X L, Lu Y G, Zhu R S*, et al. Study on the transient evolution law of internal flow field and dynamic stress of reactor coolant pump under rotor seizure accident[J]. Annals of Nuclear Energy, 2019, 133: 35-45.

    (11) Ma Z*, Lu Y G, Liu G F, et al. Enhanced cyclic redox reactivity of hematite via Sr doping in chemical looping combustion[J]. Journal of the Energy Institute, 2022, 100: 206–212.

    (12) Wang X L, Lu Y G, Zhu R S, et al. Study on bidirectional fluid-solid coupling characteristics of reactor coolant pump under steady-state condition[J]. Nuclear Engineering and Technology, 2019, 51(7): 1842-1852.

    (13) Wang X L, Lu Y G, Zhu R S*, et al. Experimental study on transient characteristics of reactor coolant pump under rotor seizure accident [J]. Annals of Nuclear Energy, 2020, 136: 1-10.

    (14) Zhao Y Y, Lu Y G, Zhu R S*, et al. MDO strategy for meridian plane design to improve energy conversion capability of LFR main coolant pump[J]. Annals of Nuclear Energy, 2020, 148:107763.

    (15) Wang X L, Lu Y G*, Zhu R S, et al. Study of non-liner cavitation on flow characteristics inside the centrifugal pump [J]. Journal of the Balkan Tribological Association, 201622(3), 2826-2842.

    (16) Wang X L, Lu Y G*, Zhu R S, et al. Study of hydraulic performance and pressure pulsation characteristics of the grinder pump in case of clogging [J]. Bulgarian Chemical Communications, 2016, 48:87-95.

    (17) Zhu R S, Chen Y M, Lu Y G*, et al. Research on structure selection and design of LBE-cooled fast reactor main coolant pump [J]. Nuclear Engineering and Design, 2020, 110973.

    (18) Wang X L, Xie Y J, Lu Y G, et al. Mathematical modelling forecast on the idling transient characteristic of reactor coolant pump[J]. Processes, 2019, 7(7):452.

    (19) Ma Z*, Zhang S, Lu Y G. Activation mechanism of Fe2O3‑Al2O3 oxygen carrier in chemical looping combustion[J]. Energy and Fuels, 2020. doi.org/10.1021/acs.energyfuels.0c02967.

    (20) Ma Z*, Liu G F, Lu Y G, et al. Improved redox performance of Fe2O3/Al2O3 oxygen carrier via element doping in chemical looping combustion[J]. Fuel Processing Technology, 2020, 224: 107030.

    (21) Ma Z*, Zhang S, Lu Y G. Phase segregation mechanism of NiFe2O4 oxygen carrier in chemical looping process[J]. International Journal of Energy Research, 2021. DOI: 10.1002/er.6026.

    (22) Ma Z, Liu G F, Lu Y G, et al. Redox performance of Fe2O3/Al2O3 oxygen carrier calcined at different temperature in chemical looping process[J]. Fuel,2021, 122381. doi.org/10.1016/j.fuel.2021.122381.

    (23) Ma Z, Yuan C, Lu Y G, et al. Effect of supports on the redox performance of pyrite cinder in chemical looping combustion[J]. Chinese Journal of Chemical Engineering, 2020.

    3、授权发明专利

    (1) 卢永刚高波张宁一种深海采矿垂向提升泵管系统, ZL202111264471.X.

    (2) 卢永刚高波马忠一种风冷型筒式联轴器, ZL202010982885.5.

    (3) 卢永刚, 冯琦高波一种氢燃料电池氢气供给系统, ZL202111264017.4.

    (4) 卢永刚王洋朱荣生一种鱼友好轴空轴流泵, ZL201610586021.5.

    (5) 卢永刚王洋朱荣生.一种核主泵反螺旋线导叶及设计方法, ZL201610009409 .9.

    (6) 卢永刚王秀礼朱荣生重金属轴流泵的多学科优化设计方法, ZL201611049061.2.

    (7) 卢永刚高波张宁一种新型对转泵结构及其工作模式, ZL202110078434.3.

    (8) 王秀礼卢永刚朱荣生一种可智能减振的泵站安装方法, ZL201710084158.5.

    (9) 王秀礼卢永刚陈文华一种泵站防涡旋智能导流装置, ZL201710038039.6.

    (10) 王秀礼卢永刚朱荣生.一种高温泵试验系统以及试验方法, ZL201810275310.2.

    (11) 王秀礼卢永刚朱荣生一种带整流叶片的离心泵叶轮, ZL201710082658.5.

    (12) 朱荣生卢永刚王秀礼基于遗传算法的高温高压离心式叶轮多学科优化方法, ZL201611050738.4.

    (13) 朱荣生卢永刚王秀礼基于多学科优化的高温高压离心泵叶轮综合设计方法, ZL201611049233.6.

    (14) 朱荣生卢永刚一种气液流量调节阀, ZL201410675608.4.

    (15) 朱荣生卢永刚一种磁流体介质润滑立式磁悬浮推力轴承, ZL201611112586.6.

    (16) 朱荣生卢永刚一种用于潜水泵水下管路的自动耦合机构, ZL201611114159.1.

    (17) 朱荣生卢永刚一种带双离合机构的轴流式水泵水轮机, ZL201611149428.8.

    (18) 朱荣生卢永刚一种泵用静水式水润滑轴承结构, ZL201611136041.9.

    (19) 朱荣生卢永刚一种新型密封机构的水力设计方法, ZL20140677310.7.

    (20) 朱荣生卢永刚一种无阻塞泵的水力设计方法, ZL201510346507.7.